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Preface

The world we live in is a dynamic one: we explore it by moving through it,
and many of the objects which we are interested in are also moving. Traffic,
for instance, is an example of a domain where detecting and processing visual
motion is of vital interest, both in a metaphoric as well as in a purely literal
sense. Visual communication is another important example of an area of science
which is dominated by the need to measure, understand, and represent visual
motion in an efficient way.

Visual motion is a subject of research which forces the investigator to deal
with complexity; complexity in the sense of facing effects of motion in a very large
diversity of forms, starting from analyzing simple motion in a changing environ-
ment (illumination, shadows, ...), under adverse observation conditions, such as
bad signal-to-noise ratio (low illumination, small-scale processes, low-dose x-ray,
etc.), covering also multiple motions of independent objects, occlusions, and go-
ing as far as dealing with objects which are complex in themselves (articulated
objects such as bodies of living beings). The spectrum of problems includes,
but does not end at, objects which are not ‘bodies’ at all, e.g., when analyz-
ing fluid motion, cloud motion, and so on. Analyzing the motion of a crowd in
a shopping mall or in an airport is a further example that implies the need to
struggle against the problems induced by complexity. We cannot be sure that the
named or similar application areas already represent the high-end of complexity
in motion analysis – actually, there will probably be even harder problems in
the analysis of complex visual motion which we have not faced yet, or which we
have not yet dared to address.

Based on the observation that the current state of the art in the field of motion
analysis is in a rather advanced shape already, but also taking into account that
there are so many real-life problems which have not been solved yet, a group
of researchers from different German research institutions decided to initiate
an international workshop to attract renowned scientists and young researchers
from different areas of visual motion analysis.

Therefore, in October 2004, the 1st International Workshop on Complex Mo-
tion (IWCM 2004) was held at Schloss Günzburg, a beautiful mansion and scien-
tific convention center administered by the University of Ulm (South Germany).
The Steering Committee of IWCM 2004 aimed at inspiring and encouraging the
members of the computer vision community to share experiences and exchange
opinions on the contemporary development of the field. There were several in-
vited talks given by renowned senior researchers who not only appreciated the
historic development of research in visual motion, but demonstrated and dis-
cussed the current grand challenges in a vivid and stimulating way.

This workshop was particularly devoted to advancing the repertoire of meth-
ods dealing with complex visual motion and to initiating a more intensive and
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hopefully continuing discussion amongst leading experts in the field. The topics
of presentations were optical flow, local motion estimation for image signals af-
fected by strong disturbances, structure from motion, multicamera flow analysis,
dynamic stereo, fluid motion analysis, the estimation of multiple motions, mo-
tion tracking, and many other areas where complex visual motion patterns have
to be evaluated. In fact, there were several plenary discussions which covered
open issues, unsolved problems, and also different opinions in a highly construc-
tive manner and which apparently ignited many further discussions adjacent to
the official workshop programme, and presumably initiated exchange and coop-
eration between researchers who had not been in direct contact before.

The workshop was organized by the members of the LOCOMOTOR Project
(Nonlinear analysis of multidimensional signals: LOcal adaptive estimation of
COmplex MOTion and ORientation patterns), which is part of the priority re-
search program SPP 1114 “Mathematical methods for time series analysis and
digital image processing” supported by the German Research Council (DFG).
We particularly appreciate the generous support that our workshop received
from the German Pattern Recognition Association (DAGM, Deutsche Arbeits-
gemeinschaft für Mustererkennung) and its president, Prof. Dr. Hans Burkhardt
(University of Freiburg). Without this generous support this workshop would
not have been possible. We also appreciate the kind support of Springer for giv-
ing us the opportunity to distribute the scientific essence of this workshop to
the computer science and engineering community via a volume in the Springer
LNCS series. We hope that the present compilation of research papers presented
at IWCM 2004 reflects the diversity of challenges, the prosperity of the research
field, and possibly also a bit of the enjoyable atmosphere we shared at Schloss
Günzburg.

November 2006 Rudolf Mester
Bernd Jähne

Erhardt Barth
Hanno Scharr
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Optical Flow Estimation from Monogenic Phase

Michael Felsberg�

Linköping University, Computer Vision Laboratory,
SE-58183 Linköping, Sweden

mfe@isy.liu.se
http://www.isy.liu.se/cvl/

Abstract. The optical flow can be estimated by several different methods, some
of them require multiple frames some make use of just two frames. One approach
to the latter problem is optical flow from phase. However, in contrast to (horizon-
tal) disparity from phase, this method suffers from the phase being oriented, i.e.,
classical quadrature filter have a predefined orientation in which the phase estima-
tion is correct and the phase error grows with increasing deviation from the local
image orientation. Using the approach of the monogenic phase instead, results
in correct phase estimates for all orientations if the signal is locally 1D. This al-
lows to estimate the optical flow with sub-pixel accuracy from a multi-resolution
analysis with seven filter responses at each scale. The paper gives a short and
easy to comprehend overview about the theory of the monogenic phase and the
formula for the displacement estimation is derived from a series expansion of the
phase. Some basic experiments are presented.

1 Introduction

The aim of this paper is not only to present just another optical flow estimation ap-
proach, but also to give a tutorial-like introduction to the topic of the monogenic signal
and its phase. We try to strip off all theoretic background which is unnecessary and focus
on a simple, concrete, and complete description of the framework. For a more formal
treatment, we refer to the earlier publications on the monogenic framework [1, 2, 3].

Based on the monogenic phase, we then derive a simple formula for measuring ori-
ented displacements between two images, which is then applied in a multi-scale ap-
proach for the estimation of the optical flow. This method is quite similar to the one
presented in [4], with two differences: We do not know the direction of displacement
in advance and we show the pure estimates, i.e., we do not post-process the point es-
timates with channel smoothing. Combining the point-wise estimator and a non-linear
smoothing technique easily compensates errors in the estimates and partly the aperture
effect, but it was not our aim to present a complete motion estimation system but rather
the signal processing part of it.

2 Why Is Phase-Based Image Processing Preferable?

Before we start to introduce the framework of the monogenic phase, we motivate why
we want to use phase-based methods at all. Basically, there are three reasons:
� This work has been supported by EC Grant IST-2003-004176 COSPAL and by EC Grant IST-

2002-002013 MATRIS.

B. Jähne et al. (Eds.): IWCM 2004, LNCS 3417, pp. 1–13, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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1. There is strong evidence that the human visual system makes use of local phase in
V1 [5].

2. Phase-based processing is to a large extend invariant to changes of lighting condi-
tions. The local image intensity can additionally be used to measure the reliability
of measurements.

3. Perceptually, the reconstruction of an image from phase information is much better
than that from amplitude information.

Reasons 2 and 3 have to be explained in some more detail. Note that we always consider
a local region in the spatial-frequency domain, i.e., we look at local image regions at
certain frequency ranges (or equivalently: at certain scales). Note in this context that we
denote spatial frequency or wavenumber by ’frequency’, not a frequency in the temporal
sense.

2.1 The Image Model of Local Phase

Our image model that we apply in phase-based processing is

I(x) = Ã(x) cos(ϕ̃(x)) + Ī (1)

where x = (x1, x2)T indicates the spatial coordinate vector, I(x) the image, Ī the aver-
age intensity (DC level), Ã(x) the instantaneous amplitude (real-valued, non-negative),
and ϕ̃(x) the instantaneous phase [6]. The average intensity is irrelevant for the analy-
sis of the image contents and in the human visual system it is largely compensated
already during the image acquisition. In this model the decomposition into Ã(x) and
ϕ̃(x) seems to be highly ambiguous. This is however not the case, since the amplitude
is a non-negative real number. Hence, the zeros of I(x) − Ī must be covered by zeros
of cos(ϕ̃(x)). Assuming sufficiently smooth functions, the zero crossings are in direct
correspondence to the full phase [7] and the instantaneous phase becomes a uniquely
defined feature.

If we switch to a local region in the spatial-frequency domain, i.e., we consider an
image region and a small range of frequencies, the model (1) becomes much simpler.
Under the assumption of small magnitude variations of the considered frequency com-
ponents in the local spectrum, the amplitude becomes approximately constant in the
local region. It is therefore referred to as the local amplitude Ax, where x now indicates
the origin of the local region, i.e., all estimates with subscript x refer to the region with
origin x. The model (1) becomes for the local region

Ĩ(x + y) = Ax cos(ϕx(y)), (2)

where Ĩ(x+y) is the local image patch, y the local patch coordinate vector, and ϕx(y)
is the local phase.

Assuming a small range of frequencies, the local phase cannot vary arbitrarily fast,
it has a high degree of smoothness. Therefore, it can be well approximated by a first
order series in y = 0:

ϕx(y) ≈ fT
x y + ϕx(0) = fxnT

xy + ϕx(0), (3)



Optical Flow Estimation from Monogenic Phase 3

Fig. 1. The checker shadow illusion ’disillusioned’. Left: original image from
http://web.mit.edu/persci/people/adelson/checkershadow illusion.html. Right: reconstruction
from local phase.

where fx is the local frequency, nx is the local orientation (unit vector), and ϕx(0) is
some phase offset. That means, our local image model directly led to the assumption of
intrinsic dimensionality one [8], or simple signals [6], where Ĩ(x + y) = Îx(nT

xy) (Î
being a suitable 1D function).

We can group the series of the local phase (3) in two different ways:

ϕx(y) ≈ fx(nT
xy) + ϕx(0) = ϕ̄x(nT

xy) and (4)

ϕx(y) ≈ nT
x (nxnT

xyfx + nxϕx(0)) = nT
x rx(y). (5)

Whereas the former expression is a 1D function with a scalar product as an argument,
the latter expression is a 2D vector field, the local phase vector rx, which is projected
onto the orientation vector. Although the distinction seems to be trivial, the local phase
vector is simpler to estimate, because we do not need to know the local orientation in
advance. We will return to this issue later.

2.2 Lighting Invariance and Perceptual Image Contents

Before we present an estimation procedure for the local phase, we continue the dis-
cussion on the reasons 2 and 3 for using phase-based methods. The decomposition of
an image into local amplitude and local phase at a particular frequency range means
to neglect the high frequencies, to represent the intermediate frequencies by the local
phase, and to cover the lower frequencies by (more global) changes of the local ampli-
tude. Changes of lighting conditions are then to a large extend represented by changes
of the local amplitude, with the exception of moving shadow boundaries. Hence, most
changes of lighting conditions are not visible in the phase representation, cf. Fig. 1.

Since the famous paper [9], it is well known that the reconstruction from the phase
spectrum is much better from a perceptional point of view than the one from the mag-
nitude spectrum. Considering the Fourier spectrum means to consider the part of the
spatial-frequency domain with maximum localization in frequency and no localization
in position. If we move to some point with finite localization in both spaces, the results
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Fig. 2. Decomposing an image into its local phase and its local amplitude. From left to right:
cos(ϕx0), Ax0 , Ĩ(x0), where the intensities are adjusted to obtain similar intensity ranges. Grey
means zero, white means positive values, and black means negative values. Top row: full size
images. Bottom row: image detail. Ĩ(x0) is obtained from I(x0) applying the filters from [10]
using scales {3,4,5}.

of the experiment from [9] still remain valid, cf. Fig. 2, although we now consider the
local phase.

If the image is decomposed into its amplitude and phase information, it becomes
evident that the local amplitude is basically just a measure for the confidence of the
extracted phase, i.e., in technical terms it represents the signal-to-noise ratio (SNR), cf.
Fig. 2, center column. The local phase represents most of the image structure, cf. Fig. 2,
left column. In the areas where the amplitude is close to zero, thus meaning ’no con-
fidence’, the local phase contains mainly noise. In the regions of non-zero confidence,
the cosine of the local phase results in a visual impression which comes very close to
the bandpass filtered image, cf. Fig. 2, right column.

3 The Monogenic Signal: A Survey

The monogenic signal provides a framework to estimate the local phase, the local orien-
tation, and the local amplitude of an image [3]. It can be considered as a 2D generaliza-
tion of the analytic signal. Former 2D generalizations tried to estimate the local phase
according to (4), which was only partly successful since the local orientation has to be
known in advance to steer the filters [11,12]. In the monogenic framework, however, we
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(q1, q2, p)T

A

ϕ

θ

Fig. 3. Local phase models. Left: the 1D phase, the corresponding filter shapes at 1, i, −1, and
−i, and the continuously changing signal profile (grey values in the background). Right: the
local phase of the monogenic signal. The 3D vector (q1, q2, p)T together with the p-axis define
a plane at orientation θ in which the rotation takes place. The normal of this plane multiplied by
the rotation angle ϕ results in the rotation vector r⊥.

try to estimate the local phase vector (5) instead, where the local orientation is part of
the result and need not be known in advance. The estimated vector has a natural upper
bound for its error [1].

3.1 Spherical Quadrature Filter

Quadrature filters in 1D are constructed in two steps:

1. Select a suitable bandpass filter which is responsible for the localization in the time-
frequency domain, i.e., it responds to signal contributions which are in a certain
frequency range (the passband) and in a certain time window. This bandpass filter
is an even filter, i.e., it is symmetric.

2. Compute the Hilbert transform of the bandpass filter in order to construct the cor-
responding odd, i.e., antisymmetric, filter which has the same magnitude spectrum.

Practical problems concerning computing the Hilbert transform are out of the scope
of this paper. The quadrature filter pair is mostly applied as a complex filter to the 1D
signal. The response is a complex signal, which is divided into magnitude and argument.
One can easily show that the argument is an estimate for the local phase. In Fig. 3 left,
the 1D phase interpretation is illustrated.

The figure is generated by projecting all possible phase-responses onto the filter. As
a result we get those input signals which would generate the in-fed responses. Keeping
the amplitude constant and varying the phase from 0 to 2π results in the sketched signal
profiles (at 1, i, −1, and −i) and the continuously varying intensities in the background.
With increasing phase angle, the quadrature filter turns from a purely even filter towards
a purely odd filter. Continuing further than π/2 leads towards an even filter again, but
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with opposite sign. After π the filter becomes first odd (opposite sign) and finally it
turns back into the initial filter. The corresponding signal profile changes from a positive
impulse over a positive step (from inside to outside), over a negative impulse, and over
a negative step, until it is a positive impulse again.

The 2D spherical quadrature filters (SQF) are constructed likewise:

1. Select a suitable radial bandpass filter, i.e., a rotation invariant filter. The passband
consists of frequencies of a certain range in absolute value, but with arbitrary di-
rection. This bandpass filter is an even filter, i.e., it is symmetric.

2. Compute the Riesz transform of the bandpass filter in order to construct the corre-
sponding odd, i.e., antisymmetric about the origin, filter which has the same mag-
nitude spectrum. The odd filter consists of two components.

The radial bandpass filter is given by some suitable frequency response Be(ρ), where
(ρ, φ) are the polar coordinates of the frequency domain, such that it is rotational sym-
metric and therefore symmetric (even) about the origin. The corresponding antisym-
metric (odd) filters are then given by

Bo1(ρ, φ) = i cosφBe(ρ) and Bo2(ρ, φ) = i sinφBe(ρ). (6)

All together, an SQF provides three responses; the even filter response p(x) = (I ∗
be)(x) and the two odd filter responses q(x) = (q1(x), q2(x))T = ((I ∗ bo1)(x), (I ∗
bo2)(x))T .

3.2 Extracting Local Phase

The local amplitude can be extracted likewise as in the 1D case by calculating the
magnitude of the 3D vector:

Ax =
√

q1(x)2 + q2(x)2 + p(x)2, (7)

cf. Fig. 4 for an example. The phase, however, cannot be extracted as the argument of a
complex number, since we need two angles to describe the 3D rotation from a reference
point (on the p-axis) into the SQF response. These angles are indicated in Fig. 3, and
they have direct interpretations in terms of local orientation and local phase.

It has been shown in [3] that an image patch with intrinsic dimensionality one and
local orientation θ (w.r.t. the horizontal axis) results in a response of the form (q1(x),
q2(x), p(x))T = (cos θ q(x), sin θ q(x), p(x))T for a suitable q(x), i.e., according to
Fig. 3, the rotation takes place in a plane which encloses angle θ with the (q1, p)-plane.
For non-zero q this angle can hence be estimated as

θx = tan−1
(

q2(x)
q1(x)

)
∈ (−π/2; π/2], (8)

where an orientation – direction ambiguity occurs, since the directional sense of a 2D
signal cannot be extracted from a local signal [6], i.e., q and −q map onto the same
orientation, cf. Fig. 4.
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Fig. 4. Upper row from left to right: original signal, local amplitude (in both cases white means
zero and black means large values), local phase according to (4) (black means negative phase,
white means positive phase). Bottom row left: local orientation. Right: local phase vector. The
length of the phase vector is encoded in grey values. The local orientation and phase are only
displayed for sufficiently large amplitude.

A further result from [3] is the connection between Hilbert transform and Riesz
transform, which practically means that a 1D projection of an SQF results in a 1D
quadrature filter. Since a signal with intrinsic dimensionality of one is constant along
a certain orientation, it leads to a 1D projection of the involved filter kernels. Hence, p
and q from the previous paragraph can be considered as a 1D quadrature filter response
and the local phase is given by arg(p+iq). However, we do not know the correct sign of
q, since it depends on the directional sense of θ. The best possible solution is to project
q onto (cos θ, sin θ):

ϕ̄ = arg(p + i(cos θ q1 + sin θ q2)) = arg(p + isign (q1)|q|), (9)

see also Fig. 4. The sign depends on q1, because θ ∈ (−π/2; π/2] which corresponds
to the quadrants with positive q1, i.e., (cos θ, sin θ) = sign (q1)q/|q|. The derived
phase estimate is actually an estimate according to (4), since q can be considered as a
steerable filter projected onto n = (cos θ, sin θ).

In order to obtain a continuous representation of orientation and phase, both are
combined in the phase vector

r = ϕ̄ (cos θ, sin θ)T =
q
|q| arg(p + i|q|), (10)
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cf. Fig. 3, right, and Fig. 4. Note that the rotation vector r⊥ is perpendicular to the local
phase vector and the local orientation. The phase vector r is an estimate according to
(5) and we will use it subsequently instead of the scalar phase ϕ̄.

3.3 Estimating the Local Frequency

As pointed out above, the local phase model was derived from a first order series ex-
pansion (3) which contained the local frequency fx. The latter can also be estimated
directly from the signal, using the spatial derivatives of (10). Since the first order ap-
proximation leads to an intrinsic dimensionality of one, we only need to consider the
directional derivative along nx w.r.t. y (∇ = (∂y1 , ∂y2)):

f̄x = (nT
x∇)ϕx(y) ≈ (nT

x∇)(nT
x rx(y)) = ∇T nxnT

x rx(y) = ∇T rx(y), (11)

where the last step is correct, since rx(y) = nxnT
xyfx + nxϕx(0), i.e., collinear with

nx, cf. (5).
Hence, the divergence of the local phase vector yields the local frequency. However,

we do not even need to compute these derivatives explicitly, which would by the way
result in some trouble with the wraparounds [13]. Instead, we do some calculus on (10)
(where we leave out some indices for convenience):

∇T r = ∇T q
|q| arg(p + i|q|)

q/|q|=±n
=

qT

|q| ∇ arg(p + i|q|)

∂ arg=∂ tan−1

=
qT

|q| ∇ tan−1
(

|q|
p

)

=
qT

|q|
1

1 + |q|2
p2

p∇|q| − |q|∇p

p2

=
qT

|q|
1

p2 + |q|2
p(∇qT )q − |q|2∇p

|q| . (12)

Since we know that we deal with an intrinsically 1D region, q itself is also 1D, and we
can write it as

q(y) = nq(nT y),

such that
qT (∇qT )q = |q|2nT (∇nT q)n = |q|2nT ∇q = |q|2∇T q,

and finally

∇T r =
p∇T q − qT ∇p

p2 + |q|2 . (13)

By this expression we can directly estimate the local frequency f̄x by a quotient con-
sisting of the three filter responses and their four partial derivatives ∂1p, ∂2p, ∂1q1, and
∂2q2.
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3.4 A Concrete Filter Set

Up to now, we have not specified a particular set of SQF. Suitable filter sets have to be
chosen according to the application. In most cases, the radial bandpass filter Be will
be designed in the Fourier domain. The frequency responses for the corresponding two
other filters are given by means of (6). The spatial derivatives of these filters are ob-
tained by multiplying the frequency responses of the former with iρ cosφ resp. iρ sinφ
according to the derivative theorem of the Fourier transform [6]. The impulse responses
of all filters are computed by numerical optimization, see e.g. [6].

This optimization becomes unnecessary if the inverse Fourier transforms of all fre-
quency responses are known. This is the case for filters based on the Poisson filter
series [10] which have been used for the following experiments. Starting point are the
Poisson filters and their Riesz transforms (lower case: spatial domain, upper case: fre-
quency domain, Fourier transform according to [6]):

he(x; s) =
s

2π(s2 + |x|2)3/2 He(ρ, φ; s) = exp(−ρs) (14)

ho1(x; s) =
x1

2π(s2 + |x|2)3/2 Ho1(ρ, φ; s) = i cosφ exp(−ρs) (15)

ho2(x; s) =
x2

2π(s2 + |x|2)3/2 Ho2(ρ, φ; s) = i sinφ exp(−ρs). (16)

The SQF for the Poisson filter series with zero value and zero first derivative at ρ = 0
is given for arbitrary scale s > 1 by

be(x; s) = he(x; s − 1) − 2he(x; s) + he(x; s + 1) (17)

bo1(x; s) = ho1(x; s − 1) − 2ho1(x; s) + ho1(x; s + 1) (18)

bo2(x; s) = ho2(x; s − 1) − 2ho2(x; s) + ho2(x; s + 1). (19)

The derivatives of these filters are straightforward to compute in either domain.

4 Optical Flow Estimation

In this section we will propose a method for two-frame optical flow estimation. Optical
flow estimation is the first step towards motion estimation. The optical flow might differ
essentially from the motion field, but this aspect is out of the scope of this paper. There
are several methods for optical flow estimation known from the literature, among these
a phase-based method for the two-frame case, see e.g. [13]. We will adapt this approach
for the monogenic framework.

4.1 Local Displacements

The main idea of flow from phase is to make a local displacement estimation by a first
order series expansion of the phase, which was a popular disparity estimation technique
in the 90ies [14, 15, 16]. This series has to be slightly adapted for the phase vector [4].
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We start with the assumption that the new frame is obtained from the old one by a local
displacement d(x):

Inew(x) = Iold(x − d(x)). (20)

In our local image model, this assumption maps directly to the phase vectors:

rnew(x) = rold(x − d(x)). (21)

Assuming |d(x)| is sufficiently small, we can approximate the phase of the new frame
by a first order expansion (c.f. (5)):

rnew(x) ≈ rold(x) − n(x)nT (x)d(x)f(x). (22)

Rearranging this equation and assuming a constant displacement in the neighborhood
N , we obtain dN from the linear system

∑

x∈N
rdiff(x) =

∑

x∈N
[rold(x) − rnew(x)] =

∑

x∈N
[n(x)nT (x)f(x)]dN , (23)

where the phase vector difference is modulo π (concerning the vector magnitude). In
practice, the phase vector difference is calculated from the 3D rotation which relates the
two SQF responses. This can be done easiest in the algebra of quaternions, resulting in
the following four components:

pdiff = poldpnew + qT
oldqnew

qdiff = poldqnew − qoldpnew

cdiff = qT
oldq

⊥
new.

Fig. 5. Flow estimation experiment with synthetic pattern. Left: pattern (Siemens star). Right:
absolute error for constant motion estimate with windowed averaging (binomial filter) in (23).
The true motion vector was (

√
2,

√
3).
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The first three components describe the local displacement, i.e., extracting the ’phase
vector’ from (qT

diff , pdiff)T using (10) yields the phase difference for (23). Note that the
amplitude of (qT

diff , pdiff)T can be used as a measurement of reliability.
The fourth component is somehow special: it describes the rotation of the local ori-

entation. This rotation angle is obtained as

ψ(x) = sin−1
(

cdiff

|qnew||qold|

)
. (24)

The two fields, i.e., the optical flow i(x) and the local rotation field ψ(x) are not in-
dependent, but they can be used in parallel to enhance the consistency of the estimated
fields, cf. also [17].

Fig. 6. Experiments on the taxi sequence. Upper left: one frame of the sequence. Upper right: con-
fidences of the estimates in logarithmic scale (white means high confidence). Bottom: estimated
flow field for a smaller region of the frame.
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Note that (23) is directly related to the brightness constancy constraint equation
(BCCE). If the intensity in the BCCE is replaced with the phase vector, i.e., constraining
phase vector constancy, and by approximating the time derivative with a finite differ-
ence, we obtain (23).

4.2 Some Examples

There is definitely a need for detailed experiments and comparisons to other methods,
but at the current state, we only present some basic experiments on synthetic data with
known ground truth, see Fig. 5, and the taxi sequence, see Fig. 6. In the synthetic ex-
periments, we have applied constant translational motion to the synthetic pattern.

For the taxi sequence, cf. Fig. 6, we have applied a single scale estimation. This was
possible, since the flow field has small magnitudes (< 3), such that the convergence
radius of the applied filter was sufficient. Note that no post-processing has been applied
to the estimates, i.e., the only regularization is given by the applied bandpass filter (here:
s = 2).

5 Summary and Outlook

We have presented a self-contained survey on the monogenic framework and derived
optical flow estimation as an application of it. The method needs, however, further in-
vestigation concerning the quality of the estimates in comparison to other two-frame
methods. For obtaining a full motion estimation system, the method has to be com-
bined with some appropriate post-processing in order to replace the linear averaging in
(23), see e.g. [18].
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Abstract. Estimation of optical flow and physically motivated brightness chan-
ges can be formulated as parameter estimation in linear models. Accuracy of this
estimation heavily depends on the filter families used to implement the models.
In this paper we focus on models whose terms are all data dependent and there-
fore are best estimated via total-least-squares (TLS) or similar estimators. Using
three different linear models we derive model dependent optimality criteria based
on transfer functions of filter families with given fixed size. Using a simple op-
timization procedure, we demonstrate typical properties of optimal filter sets for
optical flow, simultaneous estimation of optical flow and diffusion, as well as
optical flow and exponential decay. Exemplarily we show their performance and
state some useful choices.

1 Introduction

Optical flow is very well known and has a wealth of applications, see e.g. [1, 23, 24] in
this volume or [2, 8, 21] for overviews on different estimation techniques. Estimation
of optical flow with physically motivated brightness changes has been introduced and
applied in [6, 7]. It can be formulated generally as parameter estimation in linear models
that can be written in the form dT p = 0. There d is the so called data vector and p
contains the sought for parameters. For differential optical flow techniques d is build
by applying a spatio-temporal filter family to the image data and thus turning it into a
vector-valued image sequence. But models exist, where some of the components of d do
not depend on the data, e.g. when gray value sources are present like a laser induced heat
spot in a thermal image sequence. As shown e.g. in [6] parameters corresponding to the
data-dependent components have to be estimated by total-least-squares-like methods
(TLS), the others by ordinary-least-squares. In the cases covered here, all components
of d have to depend on the input image sequence. Consequently we use a TLS-estimator
(structure tensor [9]) in all performance tests. Only for pure optical flow we also use
the Combined-Local-Global (CLG) estimator from [3], in order to show the impact of
optimized filters in state-of-the-art variational estimators (error reduction about a factor
0.3 to 0.5).

A demonstration of the influence of filter families is given in Fig. 1. There the ini-
tial outline of a plant leaf (Fig. 1a ) is represented by a spline (white line). The outline
is tracked through the image sequence by moving the control points of the spline ac-
cording to the optical flow field. Fig. 1b shows the outcome using central differences

� This work has partly been funded by DFG SPP1114 (SCHA 927/1-2).

B. Jähne et al. (Eds.): IWCM 2004, LNCS 3417, pp. 14–29, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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Fig. 1. Demonstration of filter accuracy by optical flow tracking. Left: first image. Middle: tracked
with 3-tab derivative. Right: tracked with 5-tab optimized filter family.

to build spatio-temporal derivatives in the Structure Tensor. The motion is heavily un-
derestimated and features many outliers. Fig. 1c shows the result using the identical
algorithm but the 5x5x5 filters shown in Tab. 3. There are no visible deviations from the
optimal tracking result.

As the outcome of the parameter estimation heavily depends on the filters used to
build the data vector d, a good choice of these filters is crucial for high accuracy. Conse-
quently performance evaluations of optical flow techniques (e.g. [2, 8]) should consider
the same filter choices for all techniques, but usually don’t. We do a performance eval-
uation like this for the Structure Tensor and the CLG-estimator for several filter choices
to justify this claim. The main contribution of this paper however is to show how to get
good filter families, state and evaluate them for optical flow, optical flow and diffusion
as well as optical flow and exponential decay.

In Sec. 3 we show how to derive an optimization scheme for filter families. This
optimization uses the ideal estimation outcome for parameters in a model formulated in
fourier domain, thus model dependent filters will be derived. The optimality criterion is
based on the transfer functions of the filters in a family. Consequently we will briefly
recapitulate transfer functions of symmetric and antisymmetric filters, smoothing filters,
consistent derivatives and the spatial Laplacian for spatio-temporal image sequences in
Sec. 2. A few examples of optimal filter families are discussed in Sec. 4.

Related work. Due to the well understood properties of derivative filters for numerics
of PDE, the need for filter optimization has not been noticed for quite some time. A
collection of heuristic, non-optimal filter design approaches can be found in the first
sections of [11] or in [16, 17]. During the last decade many authors investigated filter
optimization. Beginning with transfer functions of single filters (e.g. [13, 22]) more and
more sophisticated optimization schemes have been developed (e.g. [4, 5, 12, 14, 15]).
The approach presented in [5] is a special case of the one presented here, namely pure
optical flow with separable weight functions in the error norm (see Sec. 3). Thus we will
not compare the filters stated there to the ones given here. The optimization strategy
used here was first presented in [20] and has already been applied to many different
filters and filter families [11, 18]. But to the best of my knowledge there is no publication
presenting a filter optimization scheme for extended motion estimation.
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2 Consistent FIR-Filters

Some of the filters presented in this section are called ’derivative’ or ’idenitity’. The
meaning of this is that in the limit of vanishing pixel distances they become the con-
tinuous derivative or identity operator. In numerics of finite differences this property
is called consistency. One can show (see e.g. [18, 19]) that it can be expressed via the
coefficients of the Taylor expansion of the transfer function in the origin of the Fourier
domain. E.g. for an ideal first order derivative, only the first1 coefficient is non-zero, for
a second order derivative the second and so on. A discrete operator is called consistent,
if all coefficients up to the last non-zero coefficient are identical to the coefficients of
the continuous operator. Thus consistency gives us a set of constraint equations we have
to fulfill if we want to call an operator ’derivative’ oder ’identity’. But it is only defined
at the center of the Fourier domain. Thus for special applications we can drop these
constraints if we know that our images do not contain data around the Fourier origin,
i.e. low frequency components. But for most applications this is not the case, thus we
stick with consistency.

2.1 One-Dimensional Filters

All filter families optimized in this paper are composed of 1d filters. Most of them are
separable filters, only the Laplacian is more complicated. In the following we use the
filter notation 2

h(r) = [h0, h1, . . . , hR] :=
R∑

r=0

hrδ(r − r0)

where h(r) denotes the spatial filter. We use ĥ(k̃) for its transfer function. The filters
used in this paper are given next.

1D Symmetric. Symmetries in filters reduce their free parameters and thus yield more
stable optimizations. For odd symmetric filters h(r) = [hR, . . . , h1, h0, h1, . . . , hR] the
transfer function is

ĥ(k̃) = h0 + 2
R∑

r=1

hr cos(πrk̃) (1)

1D Antisymmetric. These filters can be used for odd order derivatives. With the filter
h(r) = [hR, . . . , h1, 0, −h1, . . . , −hR] the transfer function we get is

ĥ(k̃) = 2i
R∑

r=1

hr sin(πrk̃) (2)

1D Smoothing. The sum over all coefficients in smoothing filters must be 1. This
is the constraint one can also derive for consistent identities. Thus smoothing filters
are identity filters. This observation will be needed in the model for optical flow and

1 We denote the DC-component as coefficient zero.
2 Please note that a filter has to be mirrored before it is applied to the data. Thus the usual

notation for a 2-tab derivative in numerics is [−1, 1] in filter notation it is [1, −1].
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exponential decay (cmp. Eqs. 27 and 29). We use symmetric filters and directly imple-
ment the constraint. In the odd case (i.e. R is odd) we get for h0

h0 = 1 − 2
R∑

r=1

hr (3)

and the transfer function

ĥ(k̃) = 1 + 2
R∑

r=1

hr(−1 + cos(πrk̃)) (4)

1D First Derivative. The constraints for consistent first derivatives are
R∑

r=1

hr = 0 and
R∑

r=1

hrr = 1 (5)

We use antisymmetric filters and get

h1 =
1

2
−

R∑

r=2

hr(r) (6)

as constraint for the odd case. The transfer function then is

ĥ(k̃) = i sin(πk̃) + 2i
R∑

r=2

hr(sin(rπk̃) − r sin(πk̃)) (7)

1D Second Derivative. Consistent second derivatives are used to build Laplacian ker-
nels. The constraints are

R∑

r=1

hr = 0,
R∑

r=1

hrr = 0 and
R∑

r=1

hrr
2 = 2 (8)

Using symmetric filters we need two coefficients to depend on the others. We choose

h0 = −2 + 2
R∑

r=2

hr(r
2 − 1) h1 = 1 −

R∑

r=2

(hrr
2) (9)

and get the transfer function

ĥ(k̃)=−2+2cos(πk̃)+2
R∑

r=2

hr

[
r2−1+cos(rπk̃)−r2cos(πk̃)

]
(10)

2.2 Spatio-temporal Filters

We compose spatio-temporal filters using the 1d filters above. For all filters of a filter
family we use the same support, which does neither need to have the same length in each
dimension nor need all lengths to be exclusively even or odd. For the motion estimation
models covered here we need 3 different filter types: Identities, first order derivatives
and spatial Laplacians. Most applications use them in 2, 3, and 4 dimensions, but higher
dimensional filters can be constructed via the same rules.

Identities. An identity I is composed of 1d smoothing filters I(1) in all dimensions

I(2) = I(1)
x ∗ I(1)

t (11)

I(3) = I(1)
x ∗ I(1)

y ∗ I(1)
t (12)

where upper indices indicate the dimensionality and lower indices the applied direction.
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First Order Derivatives. Gradients are calculated by first order derivatives D. The 1d
derivative filters are smoothed in all cross directions:

D(2)
x = D(1)

x ∗ I(1)
t D(2)

t = I(1)
x ∗ D(1)

t (13)

D(3)
x = D(1)

x ∗ I(1)
y ∗ I(1)

t D(3)
y = I(1)

x ∗ D(1)
y ∗ I(1)

t D(3)
t = I(1)

x ∗ I(1)
y ∗ D(1)

t (14)

Spatial Laplacians. Multidimensional spatial Laplacians L are sums of second deriva-
tives L(1) in all spatial directions. Thus they are

L(2) = OL(1)
x ∗ OI

(1)
t (15)

L(3) = (OL(1)
x ∗ OI(1)

y + OI(1)
x ∗ OL(1)

y ) ∗ OI
(1)
t (16)

As we have introduced all necessary filter transfer functions and rules to build single
n-dimensional filters, we will now show how to optimize their coefficients in special
filter families.

3 Filter Design as Optimization

In order to construct optimality criteria for extended optical flow estimation we use a
general optimization scheme. It has been used before in [11, 18, 20], operates in the
whole fourier space, and allows complex nonlinear optimizations of filter families.

We call a discrete filter family optimal for a model if results calculated with this filter
and results calculated with the ideal operator differ as little as possible. The problems
involved in finding this optimal filter family are to find a good design criterion for a
given model and a well adapted optimization scheme. We use the following notions:

Objective function. The objective function is the function to minimize in order to opti-
mize filter properties. In our case it is the difference between a reference and an ansatz
function.
Reference function. This function fully fulfills the design criterion derived from a spe-
cific model and thus can be used to test other functions against. For extended motion
estimation filter families are optimized. Each of these filters correspond to an ideal oper-
ator, e.g. first or second order derivatives. Thus all examples shown here use a reference
function build with the transfer functions of these ideal operators (cmp. Sec. 3.2).
Ansatz function. Like the reference function consists of transfer functions of ideal
operators, the ansatz function consists of transfer functions of discrete filters. It depends
on the coefficients of the discrete filters in the family (cmp. Sec. 3.2).
Error functional or norm. The objective function, i.e. differences between ansatz and
reference, has to be measured with an appropriate error functional. We use a weighted
L2 norm in fourier domain, where the weights model the expected energy distribution
in fourier domain. Thus wave vectors with high expected amplitude have higher weights
than those with low amplitudes (cmp. Sec. 3.3).
Optimization strategy. Depending on the error functional different optimization strate-
gies have to be applied. Linear optimizations in Euklidean norm are simple to solve,
but for nonlinear cases, other norms or parameter values with fixed-point accuracy
more sophisticated optimization schemes have to be applied [18]. In the case presented
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here, floating-point accuracy in weighted L2 norm, an implementation using Matlabs
lsqnonlin-function is appropriate.

We will now show how to choose ansatz and reference functions according to the
models involved in extended optical flow computation. We will then have a closer look
at the error norm.

3.1 Linear Models for Extended Optical Flow

The general linear model for the estimation of extended optical flow is (cmp. [6, 7])

dT p = 0 (17)

where d and p are the data vector and the parameter vector, respectively. Some simple
models are

– optical flow (OF): gxU + gyV + gt = 0

d = [gx, gy, gt]
T p = [U, V, 1]T (18)

where g is the image sequence and lower indices denote derivatives in these
directions.

– OF and exponential decay: gxU + gyV + gt = κg

d = [gx, gy, gt, g]T p = [U, V, 1, −κ]T (19)

with a decay constant κ.
– OF and isotropic diffusion: gxU + gyV + gt = d�g

d = [gx, gy, gt, �g]T p = [U, V, 1, −d]T (20)

where �g denotes the spatial Laplacian (gxx + gyy) and d is a diffusion constant
or ’diffusivity’.

In general the parameter vector contains the sought for extended flow parameters. The
data vector d is obtained by filtering the input image sequence g with a filter family.

3.2 Objective Functions for Extended OF

As Eq. 17 indicates, p is point-wise perpendicular to d. Thus the correct estimation
of the direction of d is of high importance, its absolute value does not matter. This
observation is the key to our filter design criterion. For each wave vector k̃ in fourier
domain (i.e. a planar wave in spatial domain) we calculate the data vector and normalize
it. This is the normalized vector of transfer functions of the applied operators, i.e. ideal
operators or a discrete filter family. We will explain this in more detail for the above
mentioned models.

Pure Optical Flow. For pure optical flow the data vector d is the spatio-temporal
gradient.

d = [gx, gy , gt]
T (21)
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Using ideal derivative operators for a given planar wave

g(x, k̃) = A(k̃) exp(iπk̃(x − x0)) (22)

Eq. 21 becomes
d̂(k̃) = [iπk̃x, iπk̃y, iπk̃t]

T g(x, k̃) (23)

The ideal filter family consists of spatial derivatives along the coordinate axes and the
vector of its transfer functions is [iπk̃x, iπk̃y, iπk̃t]T . By normalization of Eq. 23 we
get the reference function

d̂

|d̂|
(k̃) =

k̃

|k̃|
(24)

as iπg(x, k̃) cancels out. It is worth to note that the reference function Eq. 24 is inde-
pendent of amplitude A and phase x0 of the data. What is more, instead of the ideal
operators iπk̃x,y,t we are allowed to use regularized versions iπk̃x,y,t B(k̃) as long as
we use the same B(k̃) for all operators. This is equivalent to prefiltering the data g,
but in contrast to common assumptions (cmp. e.g. [5]) this kernel does not need to be
isotropic. In fact, when combined using different discrete derivators e.g. 2-tab and 3-tab,
its anisotropy is used to compensate differences between these filters (see [19]).

Applying discrete 3d derivative filters (Eq. 14, we omit the upper index) with transfer
functions D̂x(k̃), D̂y(k̃), and D̂t(k̃) to the planar wave (Eq. 22) we get

d̂h(k̃) = [D̂x(k̃), D̂y(k̃), D̂t(k̃)]T g(x, k̃) (25)

By normalization of Eq. 25 we get

d̂h

|d̂h|
(k̃) =

[D̂x(k̃), D̂y(k̃), D̂t(k̃)]T
√

|D̂x(k̃)|2 + |D̂y(k̃)|2 + |D̂t(k̃)|2
(26)

and as above iπg(x, k̃) cancels out. The ansatz function thus is the normalized vector
of filter transfer functions.

Optical Flow and Exponential Decay. Using the same approach as above we can
derive reference and ansatz function for Eq. 19. We apply ideal filters to the planar
wave Eq. 22 and get

d̂(k̃) = [iπk̃x, iπk̃y , iπk̃t, 1]T g(x, k̃) (27)

By normalization we get

d̂

|d̂|
(k̃) =

1
√

π2 k̃2 + 1
[iπk̃x, iπk̃y, iπk̃t, 1]

T (28)

as g(x, k̃) cancels out. Again, the reference function is the normalized vector of ideal
filter transfer functions and regularization is allowed.

Using discrete derivative filters as above (Eq. 25) and an identity filter I (Eq. 12),
i.e. a smoothing filter when using regularized filters, we get as ansatz function

d̂h

|d̂h|
(k̃) =

[D̂x(k̃), D̂y(k̃), D̂t(k̃), Î(k̃)]T
√

|Dx(k̃)|2 + |D̂y(k̃)|2 + |D̂t(k̃)|2 + |Î(k̃)|2
(29)
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Optical Flow and Isotropic Diffusion. Analoguous to the two models above, for Eq. 20
we get the reference function

d̂

|d̂|
(k̃) =

1
√

k̃2 + π2 k̃4
[ik̃x, ik̃y , ik̃t, −π k̃2]T (30)

and the ansatz function is

d̂h

|d̂h|
(k̃) =

[D̂x(k̃), D̂y(k̃), D̂t(k̃), L̂(k̃)]T
√

|D̂x(k̃)|2 + |D̂y(k̃)|2 + |D̂t(k̃)|2 + |L̂(k̃)|2
(31)

where Dx, Dy, and Dt denote 3d derivatives (Eq. 14, without upper index) and L is a
spatial Laplacian (Eq. 16).

3.3 Error Functionals

So far we have described how to construct a reference function fr(k̃) and an ansatz
function fa(k̃, h). Here h denotes all free filter coefficients of the sought for filter fam-
ily. In order to minimize the difference between fr and fa we need to define an error
functional e

e(h) =
∥
∥
∥w(k̃)

(
fr(k̃) − fa(k̃, h)

)∥
∥
∥ (32)

It calculates the difference in a weighted norm. The weight function w(k̃) allows to
specify statistical importance of different wave vectors k̃.

In this paper we only use the most common norm, L2-norm (square root of the sum
of squares, weighted Euklidean norm),

e(h) =

√√
√
√
√

∫
w2(k̃)

(
fr(k̃) − fa(k̃, h)

)2
dk̃

∫
w2(k̃)dk̃

(33)

Generally optimization has to be done in the whole first Brillouin zone of the Fourier
space. The dimension of this space depends on the dimension of the data, not on the
dimension of the filter family vectors. Using a symmetric weight function w(k̃) and
symmetric filter families allows calculation on a fraction of this space. E.g. if the weight
function and all filters are symmetric or antisymmetric with respect to the coordinate
axes only the positive quadrant (octant etc.) has to be processed.

In all example calculations we use the weight functions

w(k̃, n) =

D∏

i=1

cosn(πk̃i/2) or w(k̃, m, c) =
1

(|k̃| + c)m
(34)

The first weight function is the transfer function of a (n+1)-tab binomial filter [10],
which is often used for simple preprocessing or to build a Gaussian scale space. The
second corresponds to typical spectra in natural scenes and was used e.g. in [5, 22].
We use the values n = 4, m = 2 and c = 0.25. In most cases the choice of the
weight function is not critical. But for applications with distinct spectra, e.g. motion
estimations where the mean velocity is known not to be zero, the expected spectrum of
the image data should be used.
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4 Results

We will show some results for all objective functions defined above. Despite of giving
extensive tabular results of all filter coefficients, we will demonstrate filter properties
and general behavior of the filter families.

4.1 Pure Optical Flow

For optical flow a gradient filter family has to be optimized according to Eqs. 24 and 26
and Eq. 32 ∥

∥
∥∥
∥
w(k̃)

(
d̂

|d̂|
(k̃) − d̂h

|d̂h|
(k̃)

)∥
∥
∥∥
∥

→ min (35)

For support areas with the same length in every direction, e.g. 3 × 3 or 5 × 5 × 5, all
derivative filters and their cross smoothing kernels have exactly the same coefficients.
Thus we only state a 1d derivative and a single cross-smoother per filter family (Tab. 3).
We observe, that there is not much difference between the coefficients stated for 2d and
3d kernels. Consequently there is no urgent need to optimize for higher dimensions.

The influence of the weight function is considerable. The weight function Eq. 34,
left, allows for better and better filters, the larger their size is (cmp. Tab. 3, top, error
e). Using the weight function Eq. 34, right, results in much less improved filters (cmp.
Tab. 3, bottom, error e). This is due to the fact that the largest errors are at highest
frequencies and there the smoothing kernels have least influence on the errors. Con-
sequently it is a good idea not to use highest frequency data for motion estimation if
possible, e.g. by moderately presmoothing the data. Fortunately the derivatives pre-
sented here, especially the ones using weight function Eq. 34, left, already smooth the
data by their inherent smoothing and cross smoothing kernels. Thus the filters derived
by the cos-like weight function are good choices in general applications.

To demonstrate the accuracy achieved by these filters, we plot the maximal angular
error of a few filter choices in Fig. 2. The angular errors are reduced by approximately
1 order of magnitude for 3-tab filters and 4 orders of magnitude for 5-tab filters.

For performance evaluation of optical flow techniques, the angular error measure
given in [2],eq. 3.38, combined with synthetic or calibrated image sequences with
ground truth has become a gold standard. For the test here we use two well known test
sequences, namely ’Yosemite’3 (without clouds) and ’Marble’4, the Structure Tensor
local TLS-estimator [9], and the 3d-filter sets from Tab. 3, top, as well as central differ-
ences (’3-tab’). Sample images from the two sequences are shown in Fig. 3. Angular
errors are stated in Tab. 1. We see that errors decay with increasing filter size and fill
factors become larger. Consequently usual comparative performance evaluations of OF-
techniques need to consider filter families.

We also test the Combined-Local-Global (CLG) estimator first published in [3] with
these filters. Here in addition to the filters from Tab. 3, top, and central differences
(’3-tab’), we applied simple filter families known from numerics. A 5-tab kernel [−1, 8, 0,
−8, 1]/12 applied in x- and y-direction and a 2-tab kernel [1, −1] in t-direction (denoted

3 http://www.cs.brown.edu/people/black/images.html
4 http://i21www.ira.uka.de/image_sequences
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Fig. 2. Orientation estimation of a sinusoidal planar wave in 22,5◦-direction, the direction of
maximal error. Illustrated is the absolute value of the orientation error in degrees. Please note the
different scaling. Top: 3 × 3 filter, bottom: 5 × 5 filter. 5 × 5-Sobel is [−1, 8, 0, −8, 1]x/12 ∗
[1, 4, 6, 4, 1]y/16. The optimized filters are the ones from Tab. 3, top.

Fig. 3. Images from ’Yosemite’ (left) and ’Marble’ (right)

’5,5,2’). And a 7-tab kernel [1, −9, 45, 0, −45, 9, −1]/60 applied in x- and y-direction
and a 2-tab kernel [1, −1] in t-direction (denoted ’7,7,2’). Results for CLG are shown in
Tab. 2.

In order to demonstrate this accuracy improvement we tracked the outline of a plant
leaf and visualized it by B-splines (Fig. 1). After 43 frames the non-smoothed filters
show many outliers and underestimate the overall velocity. With optimized filters no
observable error occurs.

4.2 Optical Flow and Exponential Decay

For optical flow and exponentially decaying brightness a gradient filter family is com-
bined with an identity filter. We have to optimize the ansatz given by Eq. 29 via the
reference Eq. 29 and the error Eq. 32

∥
∥
∥
∥
∥
w(k̃)

(
d̂

|d̂|
(k̃) − d̂h

|d̂h|
(k̃)

)∥
∥
∥
∥
∥

→ min (36)
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Table 1. Mean angular errors of OF estimates using ’Yosemite’ and ’Marble’ sequences, the
Structure Tensor TLS-estimator and different filter families. 3-tab denotes central differences, the
other filters are the 3d-sets from Tab. 3. For ’Yosemite’ the structureless, cloud free area is 26.1%
of the image, in ’Marble’ no ground truth velocity field is given for 12.1% of the image.

filter Yosemite Marble
ang. error [◦] fill-factor ang. error [◦] fill-factor

3-tab 16.8 (± 25.2) 35.6% 17.7 (± 26.9) 36.0%
3x3x3 10.8 (± 24.7) 51.5% 8.6 (± 22.0) 50.4%
5x5x5 4.0 (± 11.1) 58.4% 6.9 (± 17.3) 65.3%
7x7x7 3.1 (± 7.6) 64.3% 4.3 (± 9.4) 67.4%

Table 2. Mean angular errors of OF estimates using ’Yosemite’ sequence, the 2d CLG estimator
and different filter families. ’3-tab’ denotes central differences, ’5,5,2’ and ’7,7,2’ are explained
in the text, the other filters are the 3d-sets from Tab. 3. For ’Yosemite’ the structureless, cloud
free area is 26.1% of the image, thus 73.9% fill-factor is 100% of the available area.

filter no temporal prefilter (0.5,0.5) temporal prefilter
ang. error [◦] fill-factor ang. error [◦] fill-factor

3-tab 6.95 (± 6.58) 73.9% 4.57 (± 3.75) 73.9%
5,5,2 8.30 (± 6.85) 73.9% 5.54 (± 4.85) 73.9%
7,7,2 8.53 (± 6.98) 73.9% 5.64 (± 4.89) 73.9%
3x3x3 3.13 (± 3.65) 73.9% 2.59 (± 2.58) 73.9%
5x5x5 2.80 (± 3.20) 73.9% 2.54 (± 2.46) 73.9%
7x7x7 2.68 (± 2.95) 73.9% 2.52 (± 2.41) 73.9%

At first glance the outcome of the filter optimization is amazing: The filter coefficients
are exactly the same as the ones for pure optical flow (except for the 3 × 3-case where
a difference is in the 3rd digit). The reason is that the smoothing kernels try to be close
to the inherent smoothing in the derivative kernels. To demonstrate this we plot deriva-
tive filters D(1) and smoothed ideal derivatives iπk̃I(1) in the same diagram (Fig. 4).
This property has directly been optimized in [5]. Very similar results are stated there,
compare Tab. 3, bottom with Table I in that paper. For other supports this behavior is
also true, but the smoothers in one direction adapt to the derivative in the same direc-
tion. Thus e.g. the derivative used for D(2)

x affects the smoother in D(2)
y and vice versa

(cmp. Eq. 13). The identity I(3) can be constructed using the cross smoothing kernels
of the derivatives. We conclude that the optimized filters approximate ideal derivatives
of regularized data.

4.3 Optical Flow and Diffusion

For optical flow and diffusion a gradient filter family is combined with a spatial Lapla-
cian. We have to optimize the ansatz given by Eq. 31 via the reference Eq. 30 and the
error functional Eq. 32
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Fig. 4. Derivative filters D(1) (solid dark line) and ideal smoothed derivatives iπk̃I(1) (dashed
light line). From left to right: 3 × 3, 5 × 5 and 7 × 7 from Tab. 3.

∥
∥
∥
∥∥
w(k̃)

(
d̂

|d̂|
(k̃) − d̂h

|d̂h|
(k̃)

)∥
∥
∥
∥∥

→ min (37)

As spatial smoothing in a Laplacian does not occur in 2d but in 3d and higher dimen-
sions, we not only state 2d filters (Tab. 4) but also 3d filter families. The 1d filters of the
5 × 5 × 5 family are shown in Fig. 5 in order to visualize symmetries. For the 2d filters
we observe that spatial and temporal derivatives and smoothers no longer use the same
coefficients, but the larger the filters get the less severe the differences are.

Similar to the approach in [2, 8] we also test the performance of the 3d filter sets on
sinusoidal plaid test sequences. The initial image at time t = 0 is

g(x, y, 0) = cos(kx) + cos(ky)

Given a fixed velocity vector (U, V ) and diffusion coefficient d (Eq. 20) for these se-
quences the diffusion equation can be solved in closed form. Thus we have ground truth
and can calculate absolute and relative errors of the estimated parameters. In Fig. 6 rel-
ative errors of the estimated velocities U and diffusivities d (Eq. 20) are given. In Fig. 6
first and second row U is varied and d = 0.1, V = 0 are fixed. In Fig. 6 third and
fourth row d is varied and U = 0.25pixel/frame, V = 0.5pixel/frame are fixed. The
four curves in each plot correspond to different wave-numbers k of the sinusoidal pat-
tern, k ∈ {0.03125, 0.0625, 0.125, 0.25}. Looking at the first row, we observe that the
optimized filters (3x3x3 in b1 and 5x5x5 in c1) perform better than the non-optimized
ones (a1). The error of the 5x5x5-filters in addition is nearly independent of the wave-
number k (i.e. the different curves). The second row shows, that the estimation of the
diffusivity does not depend on U as long as U is small enough and the 5x5x5-filters are
again least dependent on k. In the third row non of the filter sets show large dependen-
cies on the varying value of the diffusivity d when estimating U . Errors are in the same
range as in the first row. In the last row we see, that no matter which filter set we use,
small diffusivities are hardest to estimate, especially on large structures (solid red line,
k = 0.03125). But only the 5x5x5-filter set keeps the systematic error in the permill
range for all other cases. As an overall result we see, that only the 5x5x5-filters keep
the relative estimation errors of velocities and diffusivities in the low permill range for
a wide range of wave-numbers, diffusivities and velocities.
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Fig. 5. Optical flow and diffusion: Transfer functions of the 1d filters composing the 5 × 5 × 5

filter family stated in Tab. 5. a – c : D(3)
x , d – f : D(3)

y , g – i: D(3)
t , j – n: L(3).

5 Summary and Conclusion

We presented filter families optimized for extended optical flow estimation. Filter opti-
mization can be done in fourier domain and should use the whole first Brillouin zone. By
analyzing the optical flow model equation, we observed that in the cases considered here
only the direction of the data vector d is of importance. Consequently we derived an ob-
jective function, that optimizes the normalized vector of filter family transfer functions.
For pure optical flow and optical flow combined with exponential brightness changes
the resulting filters can be derived by a simpler optimization ([5, 22]), as long as the
weight function w(k̃) is separable. For other cases, e.g. the presented optical flow and
diffusion or non-separable or anisotropic weight functions, the full Fourier space opti-
mization scheme is more appropriate. All consistent first and second derivative filters
found here are close to regularized versions of ideal derivators. The optimal filter fam-
ilies adapt all free coefficients in order to use the same 3d regularization in every filter
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Fig. 6. Optical flow and diffusion. The solid, dashed, dashed-dotted and crossed curves corre-
spond to wave-numbers k =0.03125, 0.0625, 0.125, 0.25, respectively, in a sinusoidal test se-
quence. a : central differences, b : 3x3x3-optimized filters, c : 5x5x5-optimized filters (see Tab. 5).

of the family. Then errors introduced by the regularization of the derivators cancel out.
Non-surprisingly the optimized filters perform much better than non-optimized ones.
The larger the filters get, the more accurate they are, but also the more they regular-
ize. We showed that angular orientation errors are reduced up to 4 orders of magnitude
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Table 3. Pure optical flow: Gradient filters. Top: weight function Eq. 34, left, bottom: weight
function Eq. 34, right. See Eqs. 1 and 2 and Sec. 2 to get full filters.

size derivator D(1), h0 to hR smoother I(1), h0 to hR error e

3x3 [0, 0.5] [0.6341, 0.1830] 4.6e-9
3x3x3 [0, 0.5] [0.6326, 0.1837] 2.9e-10
5x5 [0, 0.3339, 0.0831] [0.4713, 0.2413, 0.0231] 3.5e-12
5x5x5 [0, 0.3327, 0.0836] [0.4704, 0.2415, 0.0233] 2.3e-13
7x7 [0, 0.2239, 0.1188, 0.0128] [0.3850, 0.2462, 0.0582, 0.0031] 1.2e-14
7x7x7 [0, 0.2232, 0.1190, 0.0130] [0.3845, 0.2461, 0.0583, 0.0031] 1.7e-15

3x3 [0, 0.5] [0.5450, 0.2275] 3.6e-7
5x5 [0, 0.2767, 0.1117] [0.4260, 0.2493, 0.0377] 2.59e-7
7x7 [0, 0.1886, 0.1243, 0.0210] [0.3568, 0.2440, 0.0716, 0.0060] 2.57e-7

Table 4. Optical flow and diffusion: 2d derivative filters and Laplacians optimized via Eq. 37.
Weight function Eq. 34, left. Error values are e3×3 = 2.6e − 7, e5×5 = 5.4e − 11 and e7×7 =
9.4e − 14. See Eqs. 1 and 2 and Sec. 2 to get full filters.

size filter derivator D(1) or L(1), h0 to hR smoother I(1), h0 to hR

3x3 D(2)
x [0, 0.5] [0.6885, 0.1558]

D(2)
t [0, 0.5] [0.7209, 0.1396]

L(2) [-2, 1] [0.5546, 0.2227]

5x5 D(2)
x [0, 0.3732, 0.0634] [0.4714, 0.2414, 0.0229]

D(2)
t [0, 0.3341, 0.0829] [0.5047, 0.2325, 0.0151]

L(2) [-0.7547, 0.1698, 0.2075] [0.4717, 0.2410, 0.0232]

7x7 D(2)
x [0, 0.2494, 0.1128, 0.0083] [0.3856, 0.2462, 0.0579, 0.0031]

D(2)
t [0, 0.2246, 0.1187, 0.0127] [0.4051, 0.2466, 0.0491, 0.0018]

L(2) [-0.3951, -0.0160, -0.1811, 0.0324] [0.3856, 0.2462, 0.0579, 0.0031]

Table 5. Optical flow and diffusion: 3d derivative filters and Laplacians optimized via Eq. 37.
Weight function Eq. 34, left. The error values are e3×3×3 = 7.3e − 8 and e5×5×5 = 4.1e − 12.
See Eqs. 1 and 2 and Sec. 2 to get full filters.

nd-filter 1d-filter 3×3×3, h0 and h1 5×5×5, h0 to h2

D(3)
x D(1)

x [0, -0.5] [0, -0.371, -0.0645]

I(1)
y [0.6893, 0.1553] [0.5029, 0.2331, 0.0155]

I(1)
t [0.6683, 0.1658] [0.4702, 0.2417, 0.0232]

D(3)
y I(1)

x [0.6893, 0.1553] [0.5029, 0.2331, 0.0155]

D(1)
y [0, -0.5] [0, -0.371, -0.0645]

I(1)
t [0.6683, 0.1658] [0.4702, 0.2417, 0.0232]

D(3)
t I(1)

x and I(1)
y [0.6902, 0.1549] [0.5028, 0.2331, 0.0155]

D(1)
t [0, -0.5] [0, -0.3327, -0.0836]

L(3) L(1)
x and L(1)

y [-2, 1] [-0.7446, 0.1631, 0.2092]

I(1)
x and I(1)

y [0.4878, 0.2561] [0.5066, 0.2300, 0.0167]

I(1)
t [0.5894, 0.2053] [0.4705, 0.2413, 0.0235]
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(Fig. 2), leading to severely improved accuracy in optical flow estimation (Tab. 1 and
Tab. 2). Thus optimized filter families are a key ingredient for highly accurate motion
and brightness estimations by extended optical flow.
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Abstract. Differential motion estimation is based on detecting brightness chan-
ges in local image structures. Filters approximating the local gradient are applied
to the image sequence for this purpose. Whereas previous approaches focus on the
reduction of the systematical approximation error of filters and motion models,
the method presented in this paper is based on the statistical characteristics of the
data. We developed a method for adapting separable linear shift invariant filters to
image sequences or whole classes of image sequences. Therefore, it is possible to
optimize the filters according to the systematical errors as well as to the statistical
ones.

1 Introduction

Many methods have been developed to estimate the motion in image sequences. A class
of methods delivering reliable estimates [1] are the differential based motion estimators
containing a wide range of different algorithms [1, 2, 3]. All of them are based on ap-
proximation of derivatives on a discrete grid and it turns out that this approximation
is an essential key point in order to achieve precise estimates [1, 4]. Many different
methods have been developed in the last decade trying to reduce the systematical ap-
proximation error [5, 6, 7, 8, 9, 10]. The fact that all real world images are corrupted by
noise has been neglected by these methods. In addition to these approaches we propose
a prefilter adapted to the statistical characteristics of the signal and the noise contained
in it. This approach was originally presented in [11] and further developed into a gen-
eral framework in [12]. We tested this approach with a model autocovariance function
and with real image sequences. Furthermore, we developed a method for adapting any
separable linear shift invariant filter to a given image sequence or to a whole class of
image sequences.

1.1 Differential Approaches to Motion Analysis

The general principle behind all differential approaches to motion estimation is that
the conservation of some local image characteristics throughout its temporal evolution
is reflected in terms of differential-geometric descriptors. In its simplest form the as-
sumed conservation of brightness along the motion trajectory through space-time leads
to the well-known brightness constancy constraint equation (BCCE), where ∂s

∂r denotes

B. Jähne et al. (Eds.): IWCM 2004, LNCS 3417, pp. 30–41, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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the directional derivative in direction r and g is the gradient of the gray value signal
s(x):

∂s

∂r
= 0 ⇔ gT r = 0. (1)

Since gT r is proportional to the directional derivative of s in direction r, the BCCE
states that this derivative vanishes in the direction of motion. In order to cope with the
aperture problem and to decrease the variance of the motion vector estimate, usually
some kind of weighted averaging is performed in a neighborhood V , using a weight
function w(x) leading to the optimization problem

∫

V

w
∣
∣gT r

∣
∣2 dx −→ min

⇒ rT Cgr −→ min with Cg :=
∫

V

wggT dx

The solution vector r̂ is the eigenvector corresponding to the minimum eigenvalue of
the structure tensor Cg (cf. [13, 14]). In order to calculate the structure tensor, the par-
tial derivative of the signal has to be computed at least at discrete grid points. The
implementation of the discrete derivative operators itself is a formidable problem, even
though some early authors [2] apparently overlooked the crucial importance of this
point.

1.2 Discrete Derivative Operators

Since derivatives are only defined for continuous signals, an interpolation of the discrete
signal s(xn), n ∈ {1, 2, ..., N}, xn ∈ IR3 to the assumed underlying continuous signal
s(x) has to be performed [5] where c(x) denotes the continuous interpolation kernel

∂s(x)
∂r

∣∣
∣
∣
xn

=
∂

∂r

⎛

⎝
∑

j

s(xj)c(x − xj)

⎞

⎠

∣
∣∣
∣
∣
∣
xn

=
∑

j

s(xj)
(

∂

∂r
c(x − xj)

)

︸ ︷︷ ︸
dr(x−xj)

∣
∣
∣
∣∣
∣
∣
∣
∣
xn

.(2)

The right hand side of equ. (2) is the convolution of the discrete signal s(xn) with
the sampled derivative of the interpolation kernel dr(xn), the impulse response of the
derivative filter

∂s(xn)
∂r

= s(xn) ∗ dr(xn). (3)

Since an ideal discrete derivative filter dr(xn) has an infinite number of coefficients
[15], an approximation d̂r(xn) has to be found. In an attempt to simultaneously per-
form the interpolation and some additional noise reduction by smoothing, often Gaus-
sian functions are used as interpolation kernels c(x) [14]. In the next section, some
approaches for designing derivative kernels are presented, showing that Gaussian func-
tions might not be the best choice for this purpose.
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2 Previous Work on Filter Design

Methods for approximating derivative filters represent a well established field in digital
signal processing of one-dimensional signals [15]. The derivative at a certain sample is
approximated by differences of weighted neighboring sample values. The weights are
chosen in such a way that the transfer function is as close as possible to the transfer
function of the ideal sampled derivative. The application of these techniques for one
dimensional signals to three dimensional space-time signals can be a source of highly
inaccurate optical flow estimates [4]. The problem of filter design with respect to gra-
dient based optical flow estimation was first tackled by SIMONCELLI [5]. He suggested
to optimize the partial derivative filters and the interpolation kernel simultaneously. The
approach of SCHARR [7] directly tries to minimizes the systematical error between the
filter kernel and the ideal derivative filter mask. The approach of ELAD ET AL. [9] is
based on the thesis that for optical flow estimation it is not really necessary to approxi-
mate the ideal derivative as closely as possible, but to design the filter kernel according
to the final goal, i.e. for maximum accuracy of the optical flow estimates. The error
between the ideal filter mask and the approximated one is the starting point for another
optimization approach suggested by ROBINSON and MILANFAR [10]. The error results
in a bias of the estimated direction of motion depending on the discrete derivative and
interpolation kernel. The filters are optimized with respect to this bias. All recent fil-
ter design approaches try to reduce the systematical errors caused by approximating
derivative filters and motion models. The fact that all real world images sequences are
corrupted by noise has been neglected so far. Furthermore, the characteristics of the
signal in the form of the power spectrum has only been used in order to increase the
precision in certain frequency domains; however, it has not been used to adapt the filter
directly to the signal. These two aspects have been considered in the framework devel-
oped in [11,12] which is the basis of the signal and noise adapted (SNA)-filter presented
in this work.

3 Wiener-Filter Approach

The SNA-filter approach is motivated by the well-known fact that each signal which
has a unique preference direction in space-time may be prefiltered by (almost) any
transfer function P (f)1 (except complete nullification of the signal) without changing
the direction of the eigenvectors of Cg [11].

More general, we can exchange the directional derivative filter dr(xn) in the BCCE
by any other steerable filter hr(xn) which only nullifies the signal when applied in the
direction of motion. The shape of the frequency spectrum of an orientated signal is a
plane Kr going through the origin of the Fourier space and its normal vector n points to
the direction of motion r [14]. Thus, the transfer function Dr(f) has to be zero in that
plane, but the shape of Dr(f ) outside Kr can be chosen freely as long as it is not zero
at all. If the impulse response dr(xn) shall be real-valued, the corresponding transfer
function Dr(f ) has to be real and symmetric or imaginary and antisymmetric or a linear
combination thereof. The additional degrees of freedom to design the shape outside Kr

1 Note that signals and operators in the Fourier domain are labeled with capital letters.
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make it possible to consider both the spectral characteristics of the signal and the noise
in the filter design. For deriving the optimal prefilter we model the observed image
signal z in a spatio-temporal block of dimension N × N × N by

z(i, j, k) = s(i, j, k) + v(i, j, k) .

Here, v(i, j, k) denotes the observation (measurement) noise. For the subsequent steps,
it is convenient to arrange the elements of the blocks s, v, and z in vectors s, v, and z.
In the following subsection, the framework developed in [11, 12] for designing such a
Wiener prefilter is presented.

3.1 The Canonical Basis

The first step is to change into the canonical basis, the coordinate frame of vectors y
which are obtained from vectors s by a rotation A according to

y = As, |y| = |s|

such that the covariance matrix Cy ≡ Cov [y] is diagonal. It is well known that this
rotation is performed by the principal component analysis (PCA) or Karhunen-Loève
transform (KLT). In this new coordinate frame, we have

Cy
def
= Cov [y] = diag

{
σ2

yi

}
(4)

The row vectors of the orthonormal (i.e. rotation) matrix A are given by the unit norm
eigenvectors of the covariance matrix Cs ≡ Cov [s], i.e. A is the solution to the eigen-
system problem

ACov [s] AT = diag
{
σ2

i

}
| AAT = I

In the new coordinate frame, we have

signal vector (unobservable): y = As (5)

noise vector (unobservable): u = Av (6)

observed vector: w = y + u = Az (7)

Since the original noise covariance matrix was a scaled unit matrix, and since A is a
rotation, the covariance matrix of the noise vector u contained in w remains simple:

Cu
def
= Cov [u] = σ2

vI (8)

Estimating the value of y means now to minimize the loss function

J(ŷ) = (ŷ − E [y])T C−1
y (ŷ − E [y]) + (ŷ − w)T C−1

u (ŷ − w)

The minimum mean squared error (MMSE) estimate of y is then given by

ŷ =
(
C−1

y + C−1
u

)−1 (
C−1

y E [y] + C−1
u w

)
(9)
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It is relatively simple to compute (and to interpret!) this estimate in the canonical co-
ordinate frame. For the white noise case, also denoted as independent identically dis-
tributed (i.i.d.) noise, the covariance matrix Cv of the noise term remains proportional
to a unity matrix under any arbitrary rotation of the coordinate frame. With the specific
covariance matrices which we have here (see equ. (4) and equ. (8)), we obtain:

ŷ = diag

{
σ2

yi

σ2
v + σ2

yi

}

w (10)

Since σ2
yi is the power of the signal and σ2

v the power of the noise in the regarded
’spectral component’, this result is also according to our intuitive expectation. Using
equ. (7) together with equ. (10) we obtain:

ŝ = A−1ŷ = A−1diag

{
σ2

yi

σ2
v + σ2

yi

}

w = AT diag

{
σ2

yi

σ2
v + σ2

yi

}

Az (11)

This means that for obtaining a MMSE estimate of the signal, the observed signal vector
z has to be transformed (rotated) into the canonical coordinate frame, the canonical
coordinates have to be attenuated according to the fraction σ2

yi/(σ2
v + σ2

yi) and finally
rotated back into the original coordinate frame.

3.2 The Optimized Filter

In the preceding section we have shown how to obtain a MMSE estimate of the signal.
Since we are dealing with linear shift invariant operators we can optimize our filter in
one step. Starting point for the filter design is a filter already optimized for the noise
free case denoted as h:

hT ŝ = hT AT diag

{
σ2

yi

σ2
v + σ2

yi

}

A

︸ ︷︷ ︸
R

z = (Rh)T z (12)

In the last equation we used the symmetry property of the matrix R. In [12] it has been
proven that Rh is the best approximation of h for the given signal z. In the following
sections we will denote filters optimized according to equation (12) as signal and noise
adaptive filters or SNA-filters.

4 Covariance Structure

We developed a model auto-covariance function in order to investigate the influence
of the covariance on the adapted filter masks. Let us assume that the image signals we
are dealing with are generated by shifting a given two dimensional image with constant
speed (vx, vy) in an certain direction. Obviously, the resulting three-dimensional auto-
covariance function ϕss(x, y, t) is then

ϕss(x, y, t) = ϕ̃ss(x − vxt, y − vyt).
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Fig. 4.1. Examples of spatio-temporal autocovariance functions. (a) High spatial correlation,
small motion vectors (⇒ high temporal correlation); (b) high spatial correlation, large motion
vectors (⇒ small temporal correlation); (c) small spatial correlation, small motion vectors (⇒
high temporal correlation); (d) small spatial correlation, large motion vectors (⇒ small temporal
correlation).

If the motion vector (vx, vy) itself is generated by a random process, there is a distribu-
tion for the new position (x(t), y(t)) at time instant t. The overall 3D auto-covariance
results from a convolution of the purely spatial auto-covariance function ϕ̃ss(x, y) with
the position distribution function ζ(x, y, t). In order to be able to describe the struc-
ture of the resulting spatio-temporal auto-covariance process analytically, we assume
here that both ϕ̃ss(x, y) as well as ζ(x, y, t) are sufficiently well described by Gaussian
functions.

ϕ̃ss(x, y) =
1

2πσ2
r

exp
(

−x2 + y2

2σ2
r

)

ζ(x, y, t) =
1

2πη2t
exp

(
−x2 + y2

2η2t

)
δ(t)

Convolving ϕss(x, y) with ζ(x, y, t) leads to

ϕss(x, y, t) =
1

2π(σ2
r + η2t)

exp
(

− x2 + y2

2(σ2
r + η2t)

)
(13)

This formula looks complicated, but it can be described as follows:

– The 3D auto-covariance function has a global maximum at (x, y, t) = (0, 0, 0);
– in the plane t = 0 we find the original purely spatial auto-covariance function

ϕss(x, y);
– cross-sections of ϕss(x, y, t) in constant-time planes {x, y = arbitrary, t = const}

show an increasing spread in the x, y directions with increasing absolute value
of t;

Figure 4 illustrates the effects of varying σr (spatial width of the auto-covariance func-
tion for t = 0) and η (temporal ’diffusion rate’, proportional to the length of the ex-
pected motion vector per time step).
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5 Designed Filter Sets

With the framework presented in section 3 we are able to optimize any linear shift in-
variant filter h for a given image sequence. In order to obtain optimal results also for
low signal to noise ratios, h should be already optimized for the noise free case. We
use filters optimized by the methods of SCHARR and SIMONCELLI. The methods of
ELAD ET AL. and ROBINSON and MILANFAR use prior information about the veloc-
ity range (before the motion estimation!) which is not guaranteed to be available in all
applications. If this information is available it should be used to adapt the filter to it.
However, our approach is already adapted to the motion range reflected in the covari-
ance function of the image sequence which can easily be estimated. In the following, we
demonstrate the adaptive behavior of our filters to different covariance structures. The
images are assumed to be corrupted with i.i.d noise. The covariance matrices for each
filter mask are computed from the sampled model auto-covariance function or the auto-
covariance function measured from the whole space time volume of the corresponding
image sequence. The following figures show slices of derivative operators. For the sig-
nal to noise ratio S/N , we assume 10 dB as well as no additional noise. In order to
demonstrate the significant influence of the covariance structure on the SNA-filter we
start with the simple 1d 3-tap filter (1

2 , 0, − 1
2 ).

d/dt

x = const

y = const

t = const

d/dt

x = const

y = const

t = const

Fig. 5.1. 3-tap derivative SNA-filter based on ( 1
2 , 0, − 1

2 ) in t direction for small correlation in
space and time (left) and for small correlation in time and large correlation in space (right). In
each frame slices through filter masks are shown for x=constant (upper row), y=constant (middle
row) and t=constant (lower row).

d/dt

x = const

y = const

t = const

d/dt

x = const

y = const

t = const

Fig. 5.2. 3-tap derivative SNA-filter based on ( 1
2 , 0, − 1

2 ) in t direction for large correlation in
time and small correlation in space (left) and for large correlation in space and time (right). In
each frame slices through filter masks are shown for x=constant (upper row), y=constant (middle
row) and t=constant (lower row).
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The filter (fig. 5.1, left) designed for small correlations in spatial as well as in tem-
poral direction is not influenced by the optimization procedure. For higher correlation
in spatial (fig. 5.1, right) or temporal (fig. 5.2, left) direction the filter is extended in the
corresponding direction. The size of the filter is adaptively adjusted to the correspond-
ing characteristics of the signal expressed by the covariance function. The SNA filter is
not only adapted to the temporal, like the filter of ELAD’s approach, but also towards
the spatial characteristics of the signal.
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Fig. 5.3. Translating tree: Left: One frame of the image sequence. Middle: Motion field. Right:
Slide through the corresponding auto-covariance function showing a clear structure in direction
of motion r.

d/dt

x = const

y = const

t = const

d/dt

x = const

y = const

t = const

Fig. 5.4. SIMONCELLI derivative filter (left) and SIMONCELLI derivative SNA-filter (right) in
t direction according to the covariance structure of the translating tree sequence and a signal to
noise ratio S/N of 10 dB. The filter masks are shown for t=constant (upper row), y=constant
(middle row) and t=constant (lower row).

Now we will have a look on the influence of measured auto-covariance function on
SNA-filters. In fig. 5.4 the original SIMONCELLI filter (left) and the SNA SIMONCELLI

filter (right) optimized for the translating tree sequence (fig. 5.3, left) for S/N=10 dB,
are depicted. The structure of the auto-covariance function (shown in fig. 5.3, right)
with the maximum being aligned with the direction of motion, is reflected in the filter
masks. The partial derivative operator does not point along the corresponding prin-
cipal axes any more but are adjusted towards the mean direction of motion of the
space time volume. In fact this arises from the fact that the process which gener-
ates the signal and which we assume to be isotropic has not been approbate sampled.
Nonetheless, we could segment the image sequence in regions where the direction
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d/dt

x = const

y = const

t = const

d/dt

x = const

y = const

t = const

Fig. 5.5. SIMONCELLI derivative filter (left) and separable SIMONCELLI derivative SNA-filter
(right) in t direction according to the covariance structure of the translating tree sequence and
a signal to noise ratio S/N of 10dB. The filter masks are shown for x=constant (upper row),
y=constant (middle row) and t=constant (lower row).

of motion can be assumed to be constant and optimize the filter to these regions in-
dividually. Another way to cope with this problem is to force the adapted filters to
point along the principal axis which can be achieved by individually optimizing the
1d components d

(1)
i (xn), b(1)

i (xn) i ∈ {x, y, t} of a separable derivative filter where

d
(1)
i , i ∈ {x, y, t} denotes the 1d derivative kernels and b

(1)
i the 1d smoothing kernels.

The 3d filter masks are then constructed by smoothing the derivative kernel in all cross
directions

d(3)
x (xn) = d(1)

x (xn) ∗ b(1)
y (xn) ∗ b

(1)
t (xn) (14)

d(3)
y (xn) = b(1)

x (xn) ∗ d(1)
y (xn) ∗ b

(1)
t (xn) (15)

d
(3)
t (xn) = b(1)

x (xn) ∗ b(1)
y (xn) ∗ d

(1)
t (xn). (16)

Let us consider the derivative in t direction and let b
(1)
x , b

(1)
y , d

(1)
t be vectors represent-

ing the derivative and smoothing masks, respectively. Instead of optimizing the filter
d

(3)
t , representing a N × N × N partial derivative filter mask in t direction, we opti-

mize the 1d derivative masks d
(1)
t along the t axes and the smoothing kernels b

(1)
x ,b(1)

y

applied in all cross directions. The response of d
(1)
t to the signal z = s + v

d
(1)T
t z = d

(1)T
t s + d

(1)T
t v (17)

is again the sum of a signal term s̃ = d
(1)T
t s and a noise term ṽ = d

(1)T
t v such that

we can again adapt the next filter with respect to the covariance structure of the filtered
signal. Since the application of the 1d filter in direction t induces only correlation in t
direction the noise term for the cross directions could be assumed again as i.i.d. noise.
The results of this procedure delivers SNA-filters without pointing in the average direc-
tion of motion as shown in fig. 5.5 for the SIMONCELLI derivative filter in t direction.
The separable SNA-filter behaves equivalently to the non-separable ones for different
correlation models as shown in fig. 5.6 and fig. 5.7.
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x = const

y = const

t = const

d/dt

x = const

y = const

t = const

Fig. 5.6. 3-tap derivative separable SNA-filter based on ( 1
2 , 0, − 1

2 ) in t direction for small cor-
relation in space and time (left) and for small correlation in time and large correlation in space
(right). In each frame the filter masks are shown for x=constant (upper row), y=constant (middle
row) and t=constant (lower row).
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Fig. 5.7. 3-tap derivative separable SNA-filter based on ( 1
2 , 0, − 1

2 ) in t direction for large cor-
relation in time and small correlation in space (left) and for large correlation in time and space
(right). In each frame the filter masks are shown for x=constant (upper row), y=constant (middle
row) and t=constant (lower row).

6 Experimental Results

In this section, we present examples showing the performance of our optimization
method. For the test we use two image sequences, together with the true optical flow
denoted as Yosemite (without clouds) and translating tree2. The optical flow is esti-
mated with the tensor based method described in section 1.1. For all experiments an
average volume of size 20 × 20 × 5 and filters of size 5 × 5 × 5 are applied. For the
weighting function w(x) we choose a Gaussian function with standard deviation of 6
in spatial and 2 in temporal direction. For performance evaluation the average angular
error (AAE) [1] is computed. In order to achieve a fair comparison between the differ-
ent filters but also between different signals to noise ratios S/N we computed all AAEs
for the same density determined by applying the total coherence measure and the spa-
tial coherence measure [14]. We optimized the SCHARR and the SIMONCELLI filter for
every individual signal to noise ratio S/N in a range from 20 dB to 10 dB (for i. i. d.
noise). To each image sequence we applied the original SIMONCELLI or SCHARR filter
and the SNA-filter for the actual signal to noise ratio and the SNA-filter for 10dB.

2 The translating tree sequence has been taken from Barron’s web-site and the Yosemite se-
quence from http://www.cs.brown.edu/people/black/images.html
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Fig. 6.1. Left and middle: average angular error (AAE) computed for the Yosemite sequence for a
density of (left and right: 90% and middle: 60%) with the SNA-filter for different signal to noise
ratios (10dB-20dB), 48dB denotes the images sequence without additional noise, only quanti-
zation noise. Applied filters: Original SIMONCELLI filter, SIMONCELLI SNA-filter (AWSimon-
celli) and SIMONCELLI SNA-filter (10dBWSimoncelli) for a fixed S/N = 10dB; right: same
sequence as in the left and middle figure but original SIMONCELLI filter, SIMONCELLI separa-
ble SNA-filter (AWSimoncelli) and SIMONCELLI separable SNA-filter (10dBWSimoncelli) for
a fixed S/N = 10dB.

As shown in fig. 6.1 the SNA-filters yield a better performance as the original non
adapted filters in case the image sequence is corrupted by noise (the SCHARR filter per-
forms equivalently to the SIMONCELLI filter, thus only the performance of the latter
is shown in the figures). The optimized filter for a fixed signal to noise ratio of 10 dB
performs equivalently as the SNA-filter optimized for the actual S/N ratio. For lower
densities (60%) as shown in (fig. 6.1, middle) the gain of performance decreases. The
confidence measures firstly sort out those regions for which the estimation is, even in
the case of no additional noise (48dB), hard to estimate. These are regions where the
aperture problem persists (sorted out by the spatial coherence measure) despite the av-
eraging and in those regions with nearly no structure (sorted out by the total coherence
measure). The separable SNA-filter (fig. 6.1, right) increases also the performance, but
less then the non-separable one.

7 Summary and Conclusion

We presented filters (SNA-filters) optimized according to the characteristics of signal
and noise. The SNA-filter design is completely automatic without the need of any as-
sumption on the flow field characteristics as opposed to previous approaches [9, 10].
All information necessary for the filter design can be obtained from measurable data.
Furthermore, our filter adapts to the characteristics in spatial and temporal direction
based on the covariance structure of the image sequence. We showed considerable im-
provement when applying these filters in combination with the local total least square
estimator (structure tensor approach). Designing the filter according to the covariance of
the whole image can lead to filter aligned to the average direction of motion. Nonethe-
less, the filter could be individually adapted to regions where constant motion can be
assumed. To design filters for whole image sequences or even whole classes of filters
we developed a separable SNA derivative filter which is adapted along the principal axis
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and thus by construction points only along the principle axis. Also this type of filters
increases the precision of the motion estimation.
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9. Elad, M., Teo, P., Hel-Or, Y.: Optimal filters for gradient-based motion estimation. In: Proc.
Intern. Conf. on Computer Vision (ICCV’99). (1999)

10. Robinson, D., Milanfar, P.: Fundamental performance limits in image registration. IEEE
Transactions on Image Processing 13 (2004)

11. Mester, R.: A new view at differential and tensor-based motion estimation schemes. In
Michaelis, B., ed.: Pattern Recognition 2003. Lecture Notes in Computer Science, Magde-
burg, Germany, Springer Verlag (2003)
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Abstract. Junctions play an important role in motion analysis. Approaches based
on the structure tensor have become the standard for junction detection. However,
the structure tensor is not able to classify junctions into different types (L, T, Y, X
etc.). We propose to solve this problem by the wedge channel representation. It is
based on the same computational steps as used for the (anisotropic) structure ten-
sor, but stores results into channel vectors rather than tensors. Due to one-sided
channel smoothing, these channel vectors not only represent edge orientation (as
existing channel approaches do) but edge direction. Thus junctions cannot only
be detected, but also fully characterized.

1 Introduction

Feature-based algorithms constitute a large method class for various aspects of image
analysis, including object recognition, motion estimation, stereo matching and shape
from motion/stereo. The correct detection and characterization of image features such
as edges and corners is crucial for these methods to produce accurate results or to
succeed at all. In this paper we are interested in generic feature detection methods,
i.e. methods that are not bound to a specific application and do not require prior (global)
knowledge about the expected objects as provided by geometric shape models, eigen-
faces and so on. Under the generic paradigm, features are detected in a bottom-up fash-
ion, and the amount of information extracted from the original image data – without the
help of the high-level system – should be maximized. Note that we do not question the
usefulness of top-down image analysis. Our goal is rather the independent optimization
of bottom-up processing so that the high-level system can start from intermediate data
of the best possible quality.

In the context of motion analysis, corners and junctions are of utmost importance be-
cause they often arise from 3D features (object corners) that are stable under perspective
projection and motion, or indicate important projection phenomena such as occlusion.
Accurate junction characterization improves the robustness of feature tracking and cor-
respondence estimation and aids in the correct interpretation of the measured flow fields.
Over the years, the ability of local bottom-up operators to extract high-quality junction
information has steadily improved.One early approach is to apply an edge operator to the
image and then detect corners and junctions as edge crossings in the resulting symbolic
edge representation. However, this method is problematic because edge models break
down near junctions, and the propagation of these errors leads to inaccurate, missed or
hallucinated junctions which have to be repaired by high-level assumptions or heuristics.

B. Jähne et al. (Eds.): IWCM 2004, LNCS 3417, pp. 42–53, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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The introduction of the structure tensor [1, 5, 6] extended the boundary model to
include 2-dimensional features explicitly by integrating gradient information over a
neighborhood. Recently, it was observed that the accuracy of the structure tensor can be
improved by moving from linear to anisotropic integration [9], e.g. with an hourglass
filter [7]: When the filter only smoothes along edges, nearby structures do not interfere
with each other except at junctions where it is desired. Thus, the anisotropic structure
tensor has effectively a higher resolution. However, it does not solve another problem:
second order 2 × 2 tensors can only represent a single independent orientation (the
other one is always at 90◦ of the first). Information at which angles the edges meet at a
junction is therefore unavailable. One can distinguish intrinsically 1- and 2-dimensional
locations, but classification of different junction types is impossible.

Independently of these “mainstream” methods a number of dedicated junction char-
acterization algorithms have been proposed, see [8, 12] for surveys. They build upon
one-sided filters that determine whether there is an edge in a particular sector of the
neighborhood of the given point. The complete junction characteristic can than be in-
terpolated from the responses of a family of filters covering the entire neighborhood.
However, these methods are problematic on two reasons: First, they use complicated fil-
ters that cannot be applied at fine scales due to aliasing in the sampled filter coefficients.
Systematic investigations of their robustness don’t seem to exist. Second, a difficult in-
tegration problem is posed when unrelated approaches are used for edge detection and
junction characterization: The results don’t fit exactly together, and inconsistencies in
the integrated boundary representation are unavoidable.

In this paper, we propose a junction characterization method that directly generalizes
the established structure tensor framework by means of the channel representation. The
channel representation [2,4,10] is a carefully designed method for the discretization of
continuous quantities (orientation in our case) with the goal that important properties of
the original data distribution (e.g. the mean and mode) can be recovered accurately from
the channel weights. We keep the idea of anisotropic integration of the gradient map,
but instead of collecting the integrated data into a tensor, we store them in orientation
channels. Depending on the number of channels, we can determine several indepen-
dent orientations as long as they do not fall into a single or adjacent channels. Unlike
previous work with orientation channels, we use one sided channel smoothing filters,
so that we can keep track from which direction an edge enters the junction. A similar
idea with slightly different filters was also proposed in [11]. This new wedge channel
representation extends existing work by allowing us to precisely determine the degree
of a junction, and distinguish various junction types even if they have the same degree
(e.g. T and Y-junctions for degree 3).

2 Boundary Characterization with the Structure Tensor

Given an image f(x, y), the structure tensor is based on the gradient of f , which is
usually calculated by means of Gaussian derivative filters:

fx = gx,σ � f, fy = gy,σ � f (1)
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Fig. 1. From left to right: Original image; gradient squared magnitude; trace of structure tensor;
small eigenvalue of structure tensor; eigenvector orientations

where � denotes convolution, and gx,σ, gy,σ are the derivatives in x- and y-direction of
a Gaussian with standard deviation σ:

gσ(x, y) =
1

2πσ2 e−
x2+y2

2σ2 (2)

The gradient tensor Q is obtained by calculating, at each point of the image, the Carte-
sian product of the gradient vector (fx, fy)T with itself.

Q =
(

f2
x fxfy

fxfy f2
y

)
(3)

Spatial averaging of the entries of this tensor, usually with a Gaussian filter, then leads
to the structure tensor [1, 5, 6]:

Sij = gσ′ � Qij (i, j ∈ {1, 2}) (4)

The trace of the structure tensor (which is identical to the spatial average of the gradient
squared magnitude) serves as a boundary indicator, whereas the gradient itself is only
an edge indicator and gives no response at some junction types. Spatial maxima of the
small eigenvalue of the structure tensor indicate junctions (see fig. 1). However, when two
edges run close to each other, linear integration smears these edges into each other. This
is desirable for edges that cross at a junction, but at other locations, e.g. when the edges
run in parallel, it is not. The problem can be solved by replacing linear smoothing with an
anisotropic filter such as the hourglass proposed in [7]. The hourglass kernel is defined as a
polar separable function,where the radialpart isaGaussian,but theangularpartmodulates
the Gaussian so that it becomes zero perpendicular to the local edge direction φ:

hσ′,ρ(r, ψ, φ) =

{
1
N if r = 0
1
N e−

r2

2σ′2 e
− tan(ψ−φ)2

2ρ2 otherwise
(5)

where ρ determines the strength of orientedness (the hourglass opening angle), and N is
a normalization constant that makes the kernel integrate to unity, see fig. 2 left. At every
point in the image, this kernel is rotated according to the local edge orientation defined
by φ(x, y), so that smoothing only occurs along the edge. The anisotropic structure
tensor T is obtained by applying the hourglass to the gradient tensor Q:

Tij(x, y) =
∑

x′,y′

hσ′,ρ(r, ψ, φ(x′, y′))Qij(x′, y′) (6)

with r =
√

(x − x′)2 + (y − y′)2 and ψ = tan−1
(

y − y′

x − x′

)
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Fig. 2. Left: Hourglass like filter according to (5), with ρ = 0.4 and φ = 0; Right: Hourglass
filter multiplied with r2 and split into two halves h− and h+

Fig. 3. From left to right: Original image; gradient squared magnitude; trace of structure tensor;
trace of anisotropic structure tensor

and φ(x′, y′) is the edge direction at the point (x′, y′). At junctions, this tensor equals
the linear structure tensor, but it removes the undesired behavior at other locations, see
fig. 3. With ρ = 0.4, the hourglass has an opening angle of about 22.5◦ and can be
applied at small scales σ′ without significant angular aliasing.

While the tensors S and T are good junction detectors, they cannot be used for junc-
tion characterization. The information obtained from the eigenvectors only describes
the orientation of isolated edges correctly. At corners and junctions one eigenvector
typically points into the most salient region, and the other is at 90◦ of the first, fig. 1
right. This is a fundamental limitation of second order tensors. More detailed orientation
information is in principle available in the anisotropic integration framework, because
the exact edge orientation φ(x′, y′) is fed into the hourglass filter. This information is
lost when the gradient tensors are added to form the structure tensor. Therefore, we
keep the idea of hourglass filtering, but change how the collected data are represented
afterwards: we replace the tensor by a channel representation.

3 The Channel Representation

The channel representation was developed by [2,4,10] as a tool for estimating the local
distribution of certain measurements. It can be considered as a generalization of his-
tograms. Like the latter, a channel representation consists of bins (here called channels,
hence the name) whose weights encode the probability, confidence or frequency of a
specific range of the measured quantity. But unlike histograms, where bins are separate,
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i.e. are only influenced by values that fall in between each bin’s borders, channels over-
lap. The amount of overlap is determined by the channel encoding function Θ which
can be understood as a smoothing filter that distributes every exact measurement over
a certain range of channels. A channel representation can be obtained from either a
continuous function or a finite set of samples:

ck =
∫

Θ(t − k)f(t) dt (7)

ck =
∑

i

Θ(ti − k)fi (8)

where ck is the weight of channel k, f(t) is a continuous weighting function for value
t, whereas fi is the discrete weight of the ith sample taken at point ti. The definitions
can be generalized to multiple dimensions in the obvious way.

An example for the continuous variety of the channel representation is the image
itself. Here, f(t) is the analog image that would be produced by an ideal pinhole cam-
era, and cij is the discrete image we observe. The channel encoding function Θ is in
this case formed by the combined effect of camera point spread function, defocus blur,
and sensor response. In this paper we will be interested in discrete channel representa-
tions of local orientation: At every pixel, we store a 1D channel vector that encodes the
orientation and strength of edges in a window around the pixel (more details below).

A representative value of the measured quantity can be reconstructed (decoded) from
the channel representation in several ways. A global estimate is given by the mean over
all channels. However, this is often not a very useful data description, as it smears all
information together, regardless of whether the mean is typical or remote from any ac-
tual measurement. This is similar to linear smoothing of a checker board image, whose
average intensity is gray, although gray did never occur in the original. More typical
representatives can be obtained by switching to robust channel decoding [2]. This is
best achieved by looking at the mode (the global maximum) or the set of all maxima
of the channel histogram. These values are always near measurements that frequently
occurred and thus tell more about what actually happened in a given set of samples.

Robust decoding requires an error norm that determines how many neighboring
channels are considered in the estimation of each maximum. This can be understood as
the reconstruction of a continuous weighting function from the discrete channel weights
by means of a convolution with a continuous decoding function Ψ , followed by an ana-
lytic calculation of the global or local maxima of the reconstructed function. The func-
tions Θ and Ψ must fulfill several criteria. Most importantly, it is required that both
the global and robust reconstruction methods exactly reproduce the value t of a single
encoded measurement. Second, the encoding function should be a partitioning of unity,
i.e. the sum of a set of Θ-functions placed at the channel centers should be identically
one in the entire domain of possible t-values. Likewise, the function Ψ should integrate
to unity (this requirement was not posed in [2]). These two requirements ensure that the
total confidence (weight) is preserved under channel encoding and decoding. Finally,
both Θ and Ψ should be simple functions with small support so that computations can
be efficiently executed.
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In this paper we follow the spline channel model proposed by [2]. In this model Θ is
the second order B-spline:

Θ(t) = b2(t) =

⎧
⎪⎪⎨

⎪⎪⎩

3
4 − t2 |t| < 1

2

1
2 (3

2 − |t|)2 1
2 ≤ |t| < 3

2

0 otherwise

(9)

Robust decoding consists of a sequence of two filters. First, a first order recursive filter
is applied with the transfer function

R(u) =
4

3 + cos(u)
(10)

where u is the frequency coordinate. Since the orientation domain is cyclic, the filter
response should be computed in the Fourier domain to avoid border errors. Recursive
filtering is followed by a convolution with Ψ defined by

Ψ(t) =

⎧
⎪⎪⎨

⎪⎪⎩

23
48 − 1

4 t2 |t| < 1
2

5−2|t|
12 b2(|t| − 1) + 1

2 b2(t) 1
2 ≤ |t| < 5

2

0 otherwise

(11)

The local maxima of the resulting continuous function are the robust estimates of the
dominant orientations. Due to our normalization requirement for Ψ this differs slightly
from [2], but it gives the same maxima. In practice, the convolution with Ψ needs not
be executed, because the local maxima can be found directly by solving a quadratic
equation in each channel interval, and the height of each maximum is given by a cu-
bic function. Using these definitions, we achieve a reasonable channel overlap while
computations remain relatively simple.

Encoding and decoding alone would not make the channel representation a worth-
while concept. Its real significance stems from the fact that we can perform linear or
anisotropic channel smoothing before decoding. If one channel histogram is attached to
every pixel, channel smothing is done by interpreting corresponding channel values ck

across all pixels as one image that can be smoothed independently of all other channels.
Channel smoothing has an important advantage over direct smoothing of the original
measurements: Only values close to the channel center are coded in every channel im-
age. Therefore, only values that likely result from the same distribution are averaged.
Consider again the checker board, this time with added noise. Then linear averaging
would still give us a useless gray, whereas in a channel representation noisy black
and white samples would be averaged separately, resulting in two representative av-
erages for black and white. Channel smoothing can be performed both in a linear and
an anisotropic way [3].

4 Channel Coding of the Gradient Orientation

In every pixel we have a gradient squared magnitude m(x, y) = |∇f(x, y)|2 and an
edge direction φ(x, y) perpendicular to the gradient. The magnitude is interpreted as
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Fig. 4. From left to right: Original image; total channel weight; small eigenvalue of auxiliary
tensor (14); edge orientation (all images with anisotropic channel smoothing)

the confidence of the direction measurement. The angle must first be transformed to the
channel domain by a linear mapping. When n channels are available, the mapping is

t(φ) = n
φ

φmax
φ(t) = φmax

t

n
(12)

where φmax = π or φmax = 2π depending on whether we work with orientation or
direction. In this paper, we use orientation and choose n = 8, resulting in a channel
spacing of 22.5◦. A single gradient measurement is encoded into channel ck as

ck(x, y) = m(x, y) Θ
(
Δ(t(φ(x, y)), k)

)
(13)

Since the angular domain is periodic, the difference between t and the channel center k
must be taken modulo n: Δ(t, k) = min(|t − k|, |t − k + n|, |t − k − n|) (note that the
channel index equals the channel center here).

When channel encoding is followed by linear channel smoothing, the result is similar
to the linearly integrated structure tensor: The sum of all channel weights at a given
pixel is the local boundary strength analogous to the tensor trace. In order to distinguish
1D and 2D locations it is beneficial to transform the channel weights into an auxiliary
tensor according to:

A =

( ∑
k ck cos2(φk)

∑
k ck cos(φk) sin(φk)

∑
k ck cos(φk) sin(φk)

∑
k ck sin2(φk)

)

(14)

where φk = k φmax/n is the center angle of channel k. As usual, the tensor’s small
eigenvalue is large at corners and junctions. At spatial maxima of the junction strength,
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we can now do something that was not possible with the structure tensor: we can
recover the orientation of the edges that contributed to the junction response by com-
puting (with the function Ψ ) at which angles the confidence becomes maximal (how-
ever, maxima with confidence below a certain threshold should be dropped
as insignificant).

Like the structure tensor, channel encoding can be improved by switching to aniso-
tropic channel smoothing. Here we have two possibilities. First we can apply the stan-
dard procedure: We define an anisotropic smoothing filter and apply it in every channel
so that the main filter orientation equals the center angle φk of the channel [3]. How-
ever, since the center angle is only an approximation of the encoded edge orientation,
smoothing occurs not always exactly along the edge. Therefore, we prefer a different
approach here: Since we encoded only a single gradient before channel smoothing, the
exact edge orientation is still known. We can thus apply the filter at exactly the correct
angle. This brings us back to the hourglass formula (6). But instead of tensor entries,
we now propagate magnitude/orientation pairs according to (13):

ck(x, y) =
∑

x′, y′

hσ′,ρ(r, ψ, φ(x′, y′))m(x′, y′)Θ
(
Δ(t(φ(x′, y′)), k)

)
(15)

(r, ψ, φ are as in (6)). Since we can apply this formula with an arbitrary number of
channels, we have control over the angular resolution of our junction characterization.
However, at small scales, channel spacing and hourglass opening angle should not drop
below 22.5◦ in order to avoid angular aliasing. Fig. 4 shows the results of these compu-
tations for a number of example configurations.

5 Wedge Channel Coding

Fig. 4 also reveals a principal problem with the approach sketched so far: Since forward
and backward propagation of edge information is performed in the same way, the in-
formation wether an edge entered the junction from left or right, from top or bottom, is
lost. Consequently, we are unable to distinguish a corner (degree 2) from a T-junction
(degree 3) or a saddle point (degree 4), because the channel representations have only
two maxima in all cases.

We solve this problem by breaking the symmetry of forward and backward propaga-
tion. It turns out that a slightly modified hourglass kernel is ideal for this purpose. First,
we multiply the hourglass with r2 (the squared distance from he filter center). This is
useful because gradients near a junction center do not contain valid orientation informa-
tion and their exclusion leads to more accurate orientation estimates. Second, we split
the kernel along the axis perpendicular to the edge into two halves (fig. 2 right). This
does not introduce a discontinuity because the kernel is zero along this axis. Finally, we
double the number of channels, and the first half of the channel vector receives edge
contributions coming from angles between 0 and π, whereas the second half takes the
contributions from π to 2π. In the kernel, the rule is reversed: we call h+ the kernel that
distributes information downwards (into the first half of the channel vector), and h− the
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Fig. 5. Edge direction for the same images as in fig. 4, calculated from the wedge channel
representation

kernel that distributes upwards (into the second half). The channel smoothing formula
(15) must be split accordingly:

ck<n(x, y) =
∑

x′

∑

y′>0

h+(r, ψ, φ(x′, y′))m(x′, y′)Θ
(
Δ(t(φ(x′, y′)), k)

)
(16)

ck≥n(x, y) =
∑

x′

∑

y′<0

h−(r, ψ, φ(x′, y′))m(x′, y′)Θ
(
Δ(t(φ(x′, y′) + π), k)

)
(17)

Note that φ is still taken modulo π (i.e. is the edge orientation), but we use twice as
many channels as before (0 ≤ k < 2n) and set φmax = 2π. The other algorithm steps
are mostly uneffected by this change: The boundary strength can still be calculated as
the sum of the channel weights, edges and corners can be distinguished by the small
eigenvalue of the auxiliary tensor (14), and the orientation of the confidence maxima
indicates the direction of the contributing edges. But the number of these maxima is now
a true estimate of the junctions’ degree. Corners have 2 maxima, whereas saddles have
4. It is even possible to distinguish different kinds of degree 3 junctions: a T-junction has
two opposing maxima, but a Y-junction hasn’t. A possible check for this classification
is as follows: first calculate the number of maxima from the 2π channel representation.
Then create an auxiliary channel vector ranging from 0 to π whose weights are the sum
of the weights of opposite channel pairs from the original channels, and determine the
number of its maxima. If this number is lower, one or more edges did not end at the
junction, but crossed it.

Fig. 5 show some results obtained with the wedge channel representation. The dis-
crepancy between the recovered orientations and the ground truth is below 1◦. To obtain
such a high accuracy, the hourglass kernel must be large enough: When the gradient
image has scale σg (as determined by the combined effect of the camera point spread
function and the gradient filter), the scale of the hourglass should be 2σg...3σg , depend-
ing on the junction configuration (T-junctions seem to require scales near 3σg). On the
other hand, smaller kernels may be necessary in order to prevent neighboring junctions
from interfering. Then the method still works, albeit with reduced accuracy. Finally, it
should be noted that there is no need to compute the rather expensive wedge channel
representation at every point. It suffices to first detect corners and junctions using the
eigenvalues of the anisotropic structure tensor, and perform the more expensive analysis
only there. The high similarity between the kernels involved ensures that results remain
consistent.
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Fig. 6. From left to right: Original; boundary strength (total wedge channel weight); junction
strength (small eigenvalue of auxiliary tensor); edge directions around the detected junctions:
lines of length 3 pixels were drawn into the directions found

6 Results and Conclusions

We applied the wedge channel method to a number of real images (figs. 6 and 7). It can
be seen that most corners are found correctly by the wedge channel representation, with
few false positives. In a few cases, junctions give rise to a multi-modal response. The
main advantage over the traditional structure tensor approach is the ability to perform
detailed junction characterization. The estimated directions of the edges starting at each
junctions have been marked. They are correct in most cases, although sometimes one
edge is missing, or there is an extra response. Geometric accuracy is not always satisfy-
ing and needs further investigation. It should be noted, however, that the first and third
images shown are not as easy to analyse as it may look at first sight: The tiled wall has
very low resolution (diameter of the smallest tiles is 3 pixels), and the blocks image is
relatively noisy.

Nevertheless, I believe that the wedge channel representation has a great potential
because it directly generalizes well established edge and junction detection methods. It
performs essentially the same computational steps as used in the anisotropic structure
tensor calculations, only the final result is stored in a different way in order to keep
as much information as possible: Depending on the number of channels, several inde-
pendent edge directions can be recovered from the channels representation, in contrast
to only one from a tensor. In contrast to existing orientation channel work, the wedge
channel representation measures edge direction, so that the correct junction degree can
be estimated. This is not possible with orientation channels, let alone the structure



52 U. Köthe

Fig. 7. Left: Original with junctions and edge directions; boundary strength

tensor. Due to the relatively simple filter shapes (Gaussian gradient and anisotropic
hourglass masks), the new approach can be applied at fine scales. We expect that results
can be further improved when the various parts of the algorithm are tuned to optimally
fit together.
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Abstract. The motion field from image sequences of a dynamic 3D scene is in
general piecewise continuous. Since two neighbouring regions may have com-
pletely different motions, motion estimation at the discontinuities is problematic.
In particular spatial averaging of motion vectors is inappropriate at such posi-
tions. We avoid this problem by channel encoding brightness change constraint
equations (BCCE) for each spatial position into a channel matrix. By spatial av-
eraging of this channel representation and subsequently decoding we are able to
estimate all significantly different motions occurring at the discontinuity, as well
as their covariances. This paper extends and improves this multiple motion esti-
mation scheme by locally selecting the appropriate scale for the spatial averaging.

1 Introduction

The motion field from image sequences of a dynamic 3D scene is in general piecewise
continuous. Since two neighbouring regions may have completely different motions,
motion estimation at the discontinuities is problematic. In particular this means that
linear estimation of motion parameters in regions containing a boundary is inappropri-
ate. Furthermore, effects such as shadows and transparency can result in there actually
being several valid motions at a single image location [1].

The problem of smoothing across edges can be solved to some extent by doing mo-
tion estimation in a small neighbourhood, and then applying edge preserving filtering,
or robust estimation techniques to the resultant motion field. This will reduce noise, and
eliminate outliers in the initial measurements, but the required size of the local region
will vary considerably due to the aperture problem (the motion in an intrinsic-1D neigh-
bourhood is ambiguous, see e.g. [1, 2]). Furthermore we will still run into problems if
the local region contains several valid motions, as in the case of transparency and thin
elongated objects such as tree branches.

In order to make the initial linear estimation region even smaller, one could instead
replace the initial motion estimation step with a motion constraint estimation step. A
popular motion constraint is the brightness change constraint equation (BCCE), which
relates spatial and temporal derivatives (fx, fy, ft) of the signal f , with the local image

plane motion
[
u v

]T

ufx(x, y) + vfy(x, y) + ft(x, y) = 0 . (1)

B. Jähne et al. (Eds.): IWCM 2004, LNCS 3417, pp. 54–65, 2007.
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The BCC-equation is based on the assumption of constant intensity, and can be derived
from a first order Taylor expansion of a signal undergoing an infinitesimal translation.
Since (1) is valid also in regions where the aperture problem is present, it can be cor-
rectly estimated using much smaller spatial windows. By clustering BCCEs in the u–v
plane within a local region we can then estimate several local image plane motions.
Examples of this approach are e.g. [1, 3], where the EM algorithm has been used to do
the clustering.

The BCCE is actually an incorrect motion model in a number of situations: 1) if
the illumination changes, 2) at the occlusion boundary when the background is non-
constant, 3) if two motions are present, as is the case at e.g. moving shadow boundaries
and reflections.

We have previously [4] developed a clustering technique which can automatically re-
ject most of the incorrect motion constraints, and estimate several solutions to a system of
constraints in a local neighbourhood, by encoding motion constraint estimates in chan-
nel matrices, performing spatial averaging of the matrix elements, and then decoding.
Averaging the channel matrices adds the assumption that the motion is locally constant.

There have been several other attempts to determine multiple motions, e.g. [5, 6, 7,
8]. For a discussion of the Fourier properties of multiple motions see [9]. Often some
type of filter bank is used where the filter outputs are either combined into a multiple
motion likelihood function or used as separate constraints in an over-determined system
of equations. In the presented approach we use simple derivative filters to yield the
constraint equation that is input into our estimation scheme.

1.1 Organisation of Paper

This paper is organised as follows: In section 2, we describe the channel representa-
tion of motion constraints, and conversion to and from it. In section 3, we describe
how the channel representation can be used to estimate optical flow, and demonstrate
the behaviour of the algorithm using the well known “Hamburg taxi”, and a synthetic
sequence. In section 4 we introduce an algorithm which locally adapts the size of the
region in which motion is estimated, and in section 5 we compare this method to least-
squares optical flow using the “flower garden” sequence.

2 Channel Representation

Channel representation [10, 11, 12] is a technique to represent single or multiple state-
ments with associated confidences in a uniform manner. Channel representation has
applications in learning, clustering and edge-preserving filtering [10].

In the channel representation, a measurement u, and its confidence r are represented
as a vector Φ of K channel values Φk. The channel values are computed by passing
the measurement u through a set of shifted kernel functions g(u − k), and weighting
the result with the confidence1 r, i.e. Φk(u, r) = rg(u − k). Averaging in the channel
representation followed by a local decoding is a way to estimate the modes of the PDF
p(u) [10].

1 If no confidence is available, we simply set r = 1.
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Fig. 1. Example of channel histograms with sampling distance Δu = 0.1. a) and b) Encoding of
points with σ = Δu and σ = 1.5Δu, c) and d) Encoding of lines with σ = Δu and σ = 1.5Δu.
Decoded mode locations are visualised as crosses, and the covariances as ellipses.

Common kernel choices are cos2, B-spline, and Gaussian kernels. In this paper we
will use Gaussians, since decoding of a Gaussian channel vector allows recovery of
both mode location and standard deviation.

2.1 Encoding of Points

When encoding a point
[
u v

]T
the channel value Φkl at each grid point

[
k l

]T
is ob-

tained by application of a Gaussian kernel function:

Φkl(u, v, r) = rg(d, σ) = re−0.5(d/σ)2 for d2 = (u − k)2 + (v − l)2 (2)

We only discuss the fully isotropic kernel here. Such an encoding of 2D variables is
realised more efficiently as the outer product of the 1D channel vectors for the two
components, u and v.

For several points the combined channel representation is simply given by the aver-
aged channel matrix. An example with four thus encoded points is given in figure 1a
and 1b for different kernel widths σ. Observe that there is an interference between two
points if they are too close to each other. The number of channels, their distance and
the standard deviation of the used kernel thus limits how many points we can represent
simultaneously.

2.2 Encoding of Lines

Often an image measurement does not give the exact location of the parameter we want
to estimate, but only determines that it lies somewhere in a one-dimensional subspace.
We assume that such a linear constraint is given either in standard, or in normalised form:

a x + b y + c = 0 or x cosφ + y sin φ − ρ = 0 , (3)

with [cosφ, sin φ, −ρ] = 1√
a2+b2

[
a b c

]
. All points (x, y) which satisfy (3) lie on

the line. The distance of a specific grid point (k, l) to the line is then given by d =
|k cosφ + l sin φ − ρ|. Channel values are again obtained by applying the Gaussian
kernel to the distance:

Φk,l(ρ, φ, r) = rg(d, σ) = re−0.5(d/σ)2 for d2 = k cosφ + l sin φ − ρ . (4)
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Each channel value encodes the likelihood that the motion has the value of the corre-
sponding grid point. An example with four thus encoded lines is given in figure 1c and
1d for different σ.

2.3 Point Decoding

In the decoding step we want to extract the position of local peaks in the channel matrix.
First we determine local maxima with grid point accuracy at (k, l). Then we model the
channel values in a small neighbourhood (e.g. 3×3 or 5×5) around the local maximum
using a 2D Gaussian with centre position s, amplitude r and covariance matrix C:

g(p − s, r,C) = r exp
(
−0.5(p − s)T C−1(p − s)

)
(5)

where p =
[
x y

]T
denotes local grid point coordinates. We can express the covariance

matrix and its inverse explicitly as:

C =
[

σ2
x σxy

σxy σ2
y

]
and C−1 =

1
σ2

xσ2
y − σ2

xy

[
σ2

y −σxy

−σxy σ2
x

]
. (6)

For each point in the decoding neighbourhood we thus obtain one constraint Φp =
g(p − s). After taking the logarithm this constraint becomes:

ln g(p − s) = ln r −
(x − sx)2σ2

y − 2(x − sx)(y − sy)σxy + (y − sy)2σ2
x

2(σ2
2σ

2
y − σ2

xy)
. (7)

This can be written as the scalar product between a known vector a and an unknown
parameter vector m with:

a = 0.5
[
1 2x 2y −x2 −y2 −2xy

]T
, (8)

m =
1

σ2
xσ2

y − σ2
xy

⎡

⎢⎢
⎢
⎢
⎢
⎢
⎣

2 ln r(σ2
xσ2

y − σ2
xy) − s2

xσ2
y + 2sxsyσxy − s2

yσ2
x

sxσ2
y − syσxy

syσ2
x − sxσxy

σ2
y

σ2
x

−σxy

⎤

⎥⎥
⎥
⎥
⎥
⎥
⎦

(9)

Stacking the constraints for each pixel on top of each other we obtain a least-squares
system: Am = lnΦ. The solution is obtained using the pseudo-inverse:

m = (AT A)−1AT ln Φ . (10)

We recognise the inverse covariance as:

C̃−1 =
[
m4 m6
m6 m5

]
thus C̃ =

1
m4m5 − m2

6

[
m5 −m6

−m6 m4

]
. (11)

From (9) we find the position and peak amplitude to be given by:

[
s̃x s̃y

]T
= C̃

[
m2 m3

]T
; r̃ = exp(0.5(m1 + m4s

2
x + m5s

2
y + 2m6sxsy)) . (12)
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The final solution is obtained by adding the centre grid point offset
[
ũ ṽ

]
=

[
k l

]
+[

s̃x s̃y

]
.

The expectation of the estimated covariance matrix is the sum of the noise covariance
C̃n and that of the encoding kernel Cb = diag(σ2, σ2). Hence we can compute the
covariance matrix of our estimated result to be: C̃n = C̃ − Cb. Also note that the
estimated amplitude r̃ encodes the peak likelihood and thus directly serves as a certainty
measure.

In order to determine to what extent the aperture problem persists for the considered
solution we can define the quotient of the eigenvalues of the covariance matrix as a
simple measure. Let λ1 ≥ λ2 be the eigenvalues of C̃, then we define:

ra = λ2/λ1. (13)

To summarise: for each local peak in the channel matrix, the decoding extracts the mode
location (ũ, ṽ), the amplitude r̃, the covariance C̃, and an aperture measure ra.

2.4 Multiple Decodings

The above described decoding scheme tends to give several similar solutions if the local
channel matrix structure is elongated, i.e. if ra from (13) is small. Thus we also do a
postprocessing which removes multiple solutions. As a first step, we disregard solutions
with a Mahalanobis distance larger than 1 from the initial grid point, i.e.

[
s̃x s̃y

]
C̃−1 [

s̃x s̃y

]T
< 1 . (14)

Additionally, we check if multiple solutions are within each other’s Mahalanobis dis-
tance, and if so, we keep the one which has the largest aperture measure ra.

The thus estimated peak locations and associated covariance matrices are shown in
figure 1. For isolated points the covariance vanishes, i.e. we have perfect reconstruc-
tion. Increasing the kernel size σ leads to stronger interference as can be seen in figure
1b. However the elongated shape of the covariance matrix correctly captures this in-
terference. For linear constraints we find that the intersections are correctly found, see
figure 1c. Observe that the angle between the lines determines the covariance in the
reconstructed point, for 90◦ we should have an isotropic covariance. However for small
values of σ we find a slight anisotropy caused by quantisation effects. For larger σ
(figure 1d) this effect disappears.

2.5 Line Decoding

In cases where the point decoding fails, i.e. when the decoded covariance matrix has
a zero, or negative determinant, we revert to decoding a line instead. We do this by
constraining the inverse covariance matrix to be singular. The singularity is enforced by
eigenvalue decomposition on C̃−1, and setting the smallest eigenvalue to zero.

[
m4 m6
m6 m5

]
= λ1e1eT

1 + λ2e2eT
2 ⇒ C̃−1 = λ1e1eT

1 =
[

τ2
x τxτy

τxτy τ2
y

]
. (15)
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For a singular matrix the peak position
[
s̃x s̃y

]T
is not well defined. Instead we compute

the minimum norm solution, cf. (12), of C̃−1
[
s̃x s̃y

]T =
[
m2 m3

]T
:

[
s̃x

s̃y

]
=

(τxm2 + τym3)
τ2
x + τ2

y

[
τx

τy

]
. (16)

Finally, the covariance is approximated by:

C̃ = 1/λ1(e1eT
1 + 10 000e2eT

2 ) . (17)

Note that the factor 10 000 is quite arbitrary. It is just a convenient approximation of the
infinity, such that the accuracy of the orientation of C̃ is retained.

3 Optical Flow

We now apply the presented framework to the computation of image motion. From
the assumption of conserved intensity the standard optical flow constraint equation is
obtained as:

ufx(x, y) + vfy(x, y) + ft(x, y) = 0 . (18)

Here fx, fy , and ft denote the signal derivatives along space and time dimensions, and
[u, v]T the motion. As there is only one equation with two unknowns, the solution is
constrained to lie on a line in the parameter space. This inherent ambiguity is often
referred to as the aperture problem. We encode this linear constraint as described in
section 2.2, and obtain a blurred line constraint at each spatial position.

To obtain a unique solution some form of spatio-temporal smoothness is usually re-
quired. Here we simply assume the motion in each layer to be constant in a spatial
neighbourhood. The channel matrix for such a neighbourhood is then obtained by aver-
aging the individual matrices. Instead of a standard average it is desirable to give more
weight to the central pixel. This is readily achieved by the use of an averaging filter
g(x, y) such as a Gaussian or binomial. Furthermore we might want to utilise a cer-
tainty w(x, y) at each pixel. The gradient magnitude is a possible choice. In any way
this certainty will be zero outside the image thus reducing border effects. The integrated
channel matrix is given by a normalised average:

Φ′
kl =

g ∗ (w · Φkl)
g ∗ w

(19)

where ∗ denotes convolution. We use the well known “Hamburg taxi” sequence
(figure 2) to demonstrate the algorithm. Two thus computed channel matrices are shown
in figure 2b and 2c for the locations indicated in figure 2a. Note that the averaged chan-
nel matrix corresponds to a sampled likelihood function with:

p(u, v|f) �
∑

x,y

g(x, y)w(x, y) exp
(

− (u fx + v fy + ft)2

2σ2(f2
x + f2

y )

)
. (20)
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Fig. 2. Optical flow example. a) frame 25 with marked positions A and B. b) and c) show channel
matrices at positions A and B respectively. d) gives the LS likelihood (21) at point B. e) shows
the pixels where more than one solution is obtained, f) shows the confidence in the first estimate
and g) and h) show the first and second solutions as vector plots.

(All derivatives above have an implicit spatial coordinate argument.) This can easily be
derived from (3) and (4). Compare this likelihood to the standard least-squares likeli-
hood function [13]:

p(u, v|f) � exp

(
−1
2σ2

∑

x,y

g(x, y)w(x, y)(u fx + v fy + ft)2
)

. (21)

These two likelihoods are illustrated in figure 2c and 2d for an area where a moving car
is occluded by a tree. We observe that (20) clearly distinguishes the two motions while
(21) averages them. The summation in (20) can be thought of as a voting mechanism
which makes the approach very robust to outliers, similar to a generalised Hough trans-
form. Note that when there is only one solution and no outliers the expectation values
of (20) and (21) coincide.

Points where more than one solution is obtained are indicated in figure 2e. The out-
lines of two cars are clearly visible. There are no multiple motions around the bright
car as its slow movement can not be separated from that of the background in this case
(σ = 0.2Δu). The certainty of the dominant estimate is shown in figure 2f, this also
drops slightly around the brighter car. Finally we show the first and second estimated
motion in figure 2g and 2h respectively. Around the cars their movements are captured
in the less dominant second solution.

It is possible to extract multiple motions at motion discontinuities. This is illustrated
on a synthetic sequence where all four quadrants move in different directions, an ex-
ample frame is given in figure 3a. The number of solutions is shown in figure 3b; At
the centre we get up to four estimates and at the other discontinuities we obtain two so-
lutions. The vector plot (figure 3c) illustrates that the motions are correctly estimated.
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a b c d

Fig. 3. Multiple motions at discontinuities. a) example image, b) number of solutions (range
[0 4]), c) vector plot and d) confidence (peak amplitude) in the first estimate.

a b c d

Fig. 4. Helicopter sequence. Left to right: input frame, Gradient magnitude, Thresholded gradient
magnitude, thresholded ra map (overlaid on image).

The amplitude of the dominant peak drops near the discontinuities as the energy is
distributed to several peaks, see 3d.

4 Scale Selection for Optical Flow Estimation

The “Hamburg taxi” sequence is quite convenient in the sense that it does not contain
elongated structures, and thus no serious aperture problems exist. In general however
we may need to integrate information over quite a large region in order to get rid of
aperture problems. If a local region doesn’t suffer from aperture problems, however it
is not desirable to use a too large estimation region. In fact, increasing the estimation
region reduces the spatial localisation accuracy of the estimated motion. This is known
as the uncertainty principle [2]. In order to keep the spatial localisation accuracy, and at
the same time adapt the size of the estimation region, we compute a low-pass pyramid
for each channel.

Figure 4a shows a frame from a more difficult sequence. In this sequence, the car is
moving forward, and the camera is translating upwards and to the left, to compensate

for the car motion. Figure 4b shows the gradient magnitude fm =
√

f2
x + f2

y , and

figure 4c indicates regions where the magnitude is so small (fm < 0.005) that the
BCCE constraints are unreliable due to low SNR. For such regions, we don’t provide
any constraint at all, instead we set the channel matrix to all zeros. Figure 4d indicates
regions where an optical flow estimation according to section 3 (using a 21-tap binomial



62 P.-E. Forssén and H. Spies

Fig. 5. Example of channel matrix behaviour under blurring. Left: initial constraint line. Second
to sixth images show channel matrices from successive scales in the pyramid.

filter to average the channel matrices) resulted in a dominant motion with a very low
aperture measure (ra < 0.01).

Both types of problem regions (those indicated in figure 4c and 4d) have to be dealt
with in some way. For the regions in figure 4c we could either extrapolate motion esti-
mates from neighbouring regions, as is typically done in dense optical flow techniques,
or we could leave the motion undefined, and leave it to a yet-to-be-specified post-
processing algorithm to infer the correct motion. For the regions indicated in figure
4d we have valid BCCE constraints, but we have failed to resolve the aperture problem,
and thus need to perform the estimation in a larger neighbourhood. This is the topic of
this section.

First we generate a pyramid as follows:

1. Encode the BCCE constraints as channel matrices in each pixel.
2. Perform an initial spatial average, e.g. with a 15-tap binomial filter.
3. Average again using a 4-tap binomial filter.
4. Subsample to obtain the next coarser scale in the pyramid.
5. Repeat 3 and 4 until sufficiently many scales are obtained.

Figure 5 demonstrates how channel matrices at a motion discontinuity behave under
blurring. Here we can see how the aperture problem is dealt with at increasingly coarser
scales. The first three scales all produce very elongated solutions, indicating aperture
problem or near aperture problem uncertainty. the dominant modes at the fourth and
fifth scales however have more concentrated covariance matrices, and are thus good
descriptions of the motion in the region. This example motivates the following scale
selection algorithm:

1. Decode at finest scale
2. For all decodings with an aperture measure below a given threshold:
3. Replace with decoding at coarser scale if within Mahalanobis distance, and better

wrt. aperture measure.
4. Go back to 2.

This algorithm is demonstrated in figure 6. Here we can see that initial estimates
made in a relatively small region (15-tap binomial) can be improved by replacing esti-
mates with low aperture measures. However, the method fails on very elongated struc-
tures, such as e.g. the road line at the bottom of the image. The reason for this is that the
number of votes for the same motion constraint is so high, that the estimates at the end
of the line fails to change the shape of the covariance matrix significantly. This clearly
indicates that a better aperture measure would be desirable.
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a b c d

Fig. 6. Estimated motion. a) Central input frame b) Magnitude of motion estimate at scale 1
c) Magnitude of motion estimate after integrating scales 1–5. d) Chosen scale (brighter means
higher scale, black means no estimate).

a b c d

Fig. 7. Comparison with linear optical flow on the “flower garden” sequence. a) centre input frame
(No. 5), b) magnitude of estimated motion, c) magnitude overlaid on input frame, d) result from
least-squares method.

5 Experiments

We now demonstrate the difference in behaviour between the described algorithm and
the least-squares optical flow algorithm of Lucas and Kanade [14]. We compute optical
flow by solving a system of BCCEs in each local neighbourhood:

W

⎡

⎣
| |

fx fy

| |

⎤

⎦

︸ ︷︷ ︸
A

[
u
v

]
= W

⎡

⎣
|
ft

|

⎤

⎦

︸ ︷︷ ︸
b

⇒
[
u
v

]
= (AT WA)−1AT Wb . (22)

Here W is a diagonal matrix containing the spatial weights in the neighbourhood.
Figure 7 shows a comparison of the channel matrix method and the least-squares flow

method (22). Figure 7a shows the centre input frame, and in 7b we have depicted the mag-
nitude (mainly contains the horizontal component) of the estimated motion field using
the channel matrix method. We used 3 × 3 Sobel derivative filters, but blurred the input
frames using a 9-tap binomial to increase the spatial support of the derivatives. We have
used a channel representation with 25 × 25 channels with Δu = 0.35, and σ =1.3Δu.
The initial smoothing was done using a 61-tap binomial filter, and the rest of the pyramid
was built using 4-tap filters. The motion magnitude is overlaid on the central input frame
in figure 7c, to illustrate the localisation of the result. As can be seen, the localisation of
the tree edges are quite good when there is structure behind the tree. Higher up, however
we see that the motion of the tree spills over onto the background as well.
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The result for the least-squares flow method is shown in figure 7d using the same
derivative filter responses as input. Again we used a spatial neighbourhood of a 61-
tap binomial filter to solve for (u, v). As can be seen, the edges are significantly more
blurred, and the least-squares flow gives erroneous motions at the same places as the
channel matrix, (see e.g. the bright patches at the bottom right of the image, and on
the upper right part of the tree trunk). This indicates that these errors are due to erro-
neous BCCEs, and not to the motion estimation step. By using better derivative filters,
e.g. Sharr filters [15], or by switching to a different motion constraint estimation we
should thus be able to improve the results.

6 Concluding Remarks

We have presented a framework for encoding local motion constraints in a representa-
tion where averaging yields robust estimation. We wish to emphasise that the main pur-
pose of this paper was to demonstrate the framework, and not to suggest a final motion
estimation method. The channel representation framework allows the BCCE constraint
to be replaced, e.g. by a phase based [16], or 3D-orientation constraint. Furthermore,
we can easily combine both measurements that yield motion constraints and full motion
estimates (as obtained from e.g. feature matching methods) by encoding them using the
line encoding and the point encoding respectively.

For integration of estimates at different scales, the results are somewhat disappoint-
ing, since only minor improvements compared to the single scale method are obtained.
Better results could probably be obtained by instead letting the covariance of the initial
estimates guide the shape of the estimation region at coarser scales.
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Abstract. Transparent motions are additive or multiplicative superpositions of
moving patterns and occur due to reflections, semi-transparencies, and partial oc-
clusions. The estimation of transparent motions remained a challenging nonlinear
problem. We here first linearize the problem in a way which makes it accessible
to the known methods used for the estimation of single motions, such as structure
tensor, regularization, block matching, Fourier methods, etc. We present the re-
sults for two motion layers but there is no limit to the number of layers. Finally,
we present a way to categorize different transparent-motion patterns based on the
rank of a generalized structure tensor.

1 Introduction

Motion estimation is a core problem in computer vision - see for example [1, 2, 3] in
this volume. Most motion models used in standard applications are still rather sim-
ple and thus fail with more complex motion patterns. As a particular class of complex
motion patterns, the multiple transparent motions treated here are additive or multi-
plicative superpositions of single moving patterns and occur due to reflections, semi-
transparencies, and partial occlusions.

An algorithm for the estimation of two transparent motions was first proposed by
Shizawa and Mase [4]. A layered representation of image sequences was presented
in [5] and approaches based on nulling filters and velocity-tuned mechanisms have been
proposed in [6, 7]. A phase-based solution for the estimation of two transparent over-
laid motions and the separation of the image layers was proposed by Vernon [8], and
a solution for the separation of the image layers by using the constrained least-squares
method was proposed in [9]. However, the estimation of transparent motions and the
separation of the corresponding layers remained a challenging nonlinear problem [10].
Here we show how this problem can be naturally split into a linear and a nonlinear part.
The linear part is then accessible to known methods used for the estimation of single
motions, such as methods based on the structure tensor, regularization, block matching,
Fourier analysis, etc. This becomes very useful since, in our approach, the nonlinear
part has a closed-form solution. For simplicity, we restrict ourselves to the case of only
two transparent motions at a given location in the image. This is certainly the most
likely case in applications but, theoretically, our solutions are not limited by the number
of transparent layers. In fact, our results are presented such that the generalization to

B. Jähne et al. (Eds.): IWCM 2004, LNCS 3417, pp. 66–77, 2007.
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more than two layers is straightforward and the principle of how to generalize has been
presented before [11,12,13,14]. Moreover, our approach provides confidence measures
that allow for the categorization of different motion patterns and for the automatic de-
tection of the number of moving layers. A related problem is the estimation of multiple
global motions - see [15, 16] in this volume.

This paper is organized as follows. Section 2 introduces a differential constraint
equation for transparent motions. The problem is then split into a linear and a non-
linear part. Two different algorithms to solve the linear part are presented and the non-
linear part is solved analytically. Section 3 introduces a Fourier domain constraint for
transparent motions. The goal is to estimate the phase shifts corresponding to the mo-
tion vectors. The problem is, again, solved by splitting into linear and nonlinear parts.
We show how to use the estimated phase shifts for separation of the image layers. Fi-
nally, the Fourier constraint is transformed back to the space domain to obtain a block
matching constraint. Experimental results are presented for synthetic and real image
sequences.

2 Differential Methods

Differential methods are based on the well-known constant brightness constraint equa-
tion [17], i.e., the motion field u = (ux, uy)T of an image sequence g(x, t) is con-
strained by

uxgx + uygy + gt = 0 (1)

where gr = ∂g/∂r, r ∈ {x, y, t}. We write the above equation in short form as
α(u)g(x, t) = 0, where α(u) = ux∂/∂x + uy∂/∂y + ∂/∂t. Next, a similar constraint
will be derived for an additive model of transparent motions.

Constraint Equation for Transparent Motions. We consider an additive superposi-
tion of two image sequences (layers) f(x, t) = g1(x, t) + g2(x, t). If the motion fields
are sufficiently smooth to be considered ‘locally constant’, the layers can be modeled
as g1(x, t) = ϕ1(x− tu) and g2(x, t) = ϕ2(x− tv) with constant motion fields u and
v respectively. In this case, the operators α(u)and α(v) commute and we obtain the
following constraint equation for the motion vectors [4]:

α(u)α(v)f(x, t) = 0. (2)

Since this transparent-motion constraint is nonlinear, the estimation of the motion
vectors by the direct use of Equation (2) leads to non-convex problems. We overcome
this difficulty by splitting the solution into a linear and a nonlinear part. By expanding
Equation (2), we obtain

cxxfxx + cyyfyy + ftt + cxyfxy + cxtfxt + cytfyt = 0 (3)

where frs = ∂2f/∂r∂s, r, s ∈ {x, y, t}; and

cxx = uxvx cxt = ux + vx cxy = uxvy + uyvx

cyy = uyvy cyt = uy + vy (4)
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are the so-called mixed motion parameters. In case of a multiplicative superposition

f(x, t) = g1(x, t)g2(x, t), the constraint is the same except for frs = f ∂2f
∂r∂s −

∂f
∂r

∂f
∂s [18]. The introduction of the mixed motion parameters splits, in a natural way,

the problem of transparent motion estimation in two parts: a linear part where we solve
for the parameters crs, r, s ∈ {x, y, t}; and a nonlinear part where we solve Equa-
tion (4) for the motion vectors. Since Equation (3) is linear we can use different meth-
ods for the estimation of the mixed motion parameters. We will describe some of these
methods in Section 2.1.

2.1 Linear Part: Estimation of the Mixed Motion Parameters

The Structure Tensor. Let time be parameterized such that Equation (1) reads

ũxgx + ũygy + utgt = 0 (5)

with a unity parameter vector ue = (ũx, ũy, ut)T . If the variables gx, gy, gt are inde-
pendent with equal variances and ue is constant, the best fit ûe, in a least-squares sense,
is the minimizer of the functional

E(ue) =
∫

|ue · ∇g(x, t)|2ω(x, t) dΩ, (6)

where Ω is a neighborhood of the point of interest and ω(x, t) is an weighting function.
Therefore, ûe is the minimal eigenvector of the structure tensor [19]

J1 =
∫

∇g(x, t) ⊗ ∇g(x, t)ω(x, t) dΩ. (7)

The motion vector is then recovered from ûe/ût.
For the mixed motion parameters, we proceed in analogy and look for a unity mini-

mizer ce = (cxx, cyy, ctt, cxy, cxt, cyt)T of the functional

E(ce) =
∫

|ce · f(2)(x, t)|2ω(x, t) dΩ, (8)

where f(2) = (fxx, fyy, ftt, fxy, fxt, fyt)T . Note that ctt replaces 1 as the coefficient of
ftt in Equation (3). Again, the optimal estimator ĉe is the minimal eigenvector of

J2 =
∫

f(2)(x, t) ⊗ f(2)(x, t)ω(x, t) dΩ (9)

and the mixed motion parameters are recovered from ĉe/ĉtt [11].

Confidence Measures. Clearly the estimator ĉe (ûe) is reliable only if the minimal
eigenvalue of J2 (or J1) is small compared to the others (ideally, exactly one eigenvalue
should be zero). Therefore, confidence for the quality of the estimation can be derived
from the eigenvalues of JN , N = 1, 2. however, it is useful to know the confidence
before the estimation is performed. Let HN , KN , SN represent the trace, the determi-
nant, and the sum of the central minors of JN respectively. These numbers scale as
K1/m ≤ (S/m)1/(m−1) ≤ H/m (with m = (N + 1)(N + 2)/2). In the ideal (noise
free) case of only one zero eigenvalue, we have K = 0, S �= 0 and in practice the above
scaling relation can be used to define confidence measures [11].
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Table 1. Different motion patterns (first column) and the ranks of the generalized structure tensors
for 1 and 2 motions respectively (columns 2 and 3). Bars indicate motions of 1D (straight) patterns
and filled circles motions of 2D patterns - see text for further details. The shown correspondences
between the different motion patterns and the ranks of the two tensors can be used to identify
the different motion patterns. In general, the rank of JN , N = 1, 2, ... induces a natural order of
complexity for patterns consisting of N additive layers [12].

Moving Pattern rankJ1 rankJ2

◦ 0 0
| 1 1
| + | 2 2
• 2 3
• + | 3 4
• + • 3 5
others 3 6

Local Categorization of the Moving Patterns. Besides allowing for motion estimation,
the structure tensor allows for a local categorization of the moving pattern ϕ : rankJ1 =
0 corresponds to regions with constant intensity (◦) and any motion vector is admissi-
ble in this region; rankJ1 = 1 corresponds to the motion of a straight pattern (|), in
this case admissible motion vectors are constrained by a line; other moving patterns
(•) correspond to the rankJ1 = 2; and non-coherent motion like noise, appearing and
disappearing objects, etc. correspond to rankJ1 = 3. Remarkably, in the case of trans-
parent motions, the categorization of the moving patterns is again accessible through
the rankJ2. Table 1 summarizes these correspondences. For further details see [12].

Regularization. Here we show how to apply a Horn-Schunck-type regularization me-
thod for the estimation of the mixed motion parameters. To emphasize the dependency
on c, we rewrite Equation (3) as c·f(2)r+ftt =0, where f(2)r =(fxx, fyy, fxy, fxt, fyt)T.
At a given time, we then look for a field c = (cxx, cyy, cxy, cxt, cyt)T that minimizes
the functional ∫

1
λ2 |c · f(2)r + ftt|2 + |∇c|2 dΩ , (10)

where λ = λ(x). The Euler-Lagrange equation is

(c · f(2)r + ftt)f(2)r = λ2Δc (11)

Using the approximation h2Δc ≈ č−c, where h is a normalization constant assimilated
by λ, and solving for c, we obtain a Gauss-Seidel iteration step defined by

ck+1 = čk −
čk · f(2)r + ftt

λ2 + |f(2)r|2
f(2)r. (12)

This iteration step defined by (12) can be implemented either directly as in [20],
by simple methods like successive over-relaxation or by more sophisticated methods
like multi-grid relaxation. Next, we show how to solve for the motion vectors u and v
given c.
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2.2 Nonlinear Part: Solving for the Motion Vectors

The key to our solution is the interpretation of the motion vectors as complex num-
bers [11], i.e., u = ux + juy, and v = vx + jvy and the observation that

uv = cxx − cyy + jcxy = A0, u + v = cxt + jcyt = A1. (13)

In the above equations, the last equalities are just the definitions of A0 and A1. Hence,
the motion vectors can be recovered as the roots of the complex polynomial

Q2(z) = (z − u)(z − v) = z2 − A1z + A0 (14)

since the coefficients of Q2(z) depend only on the mixed motion parameters. However,
Equation (4) is a over-determined system of equations for the motion vectors. Conse-
quently, not all possible values for the mixed motion parameters vector c correspond
to motion vectors. To better understand this issue, we consider Equations (2) and (3) in
the Fourier domain where they become

(uxξx + uyξy + ξt)(vxξx + vyξy + ξt)F(ξx, ξy, ξt) = 0 (15)

and

(cxxξ2
x + cyyξ2

y + cttξ
2
t + cxyξxξy + cxtξxξt + cytξyξt)F(ξx, ξy , ξt) = 0 (16)

respectively. F(ξx, ξy, ξt) represents the Fourier transform of f(x, y, t). Therefore, fit-
ting the motion vectors u,v to Equation (2) is equivalent to fitting two planes to the
support of F(ξx, ξy, ξt) while fitting a parameter vector c to Equation (3) is equivalent
to fitting a quadric to the support of F(ξx, ξy, ξt). Such a quadric represents two planes
if and only if its associated matrix has exactly two nonzero eigenvalues of opposite
signs. Therefore, we conclude that a vector c of mixed motion parameters corresponds
to two motion vectors if and only if

∣
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The role of the above conditions is to exclude the case when Equation (3) is valid but
the Fourier transform of the motion signal is not restricted to two planes.

2.3 Experimental Results

Figure 1 shows results for a synthetic image sequence with transparent motions. The
algorithm first determines one motion using J1 if the confidence for one motion is high.
If the confidence test fails (H1 > ε0, K

2/3
1 > ε1S1), two motions are estimated by

using J2. If confidence for two motions fails (K5/6
2 > ε2S2) no motion is estimated

(although this procedure could be extended for an arbitrary number of motions). The
values ε0 = 0.001, ε1 = 0.2, ε2 = 0.3 were used for the confidence parameters. We
used [1, 0, −1]T [1, 1, 1] as first order derivative filter, an integration window of 5×5×5
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(a) (b) (c)

Fig. 1. Results for synthetic data: (a) the central frame of a synthetic input sequence to which
dynamic noise with an SNR of 35 dB was added; (b) the estimated motion fields; (c) the seg-
mentation defined by confidence for one (black) and two (white) motions. The background
moved down and the foreground square to the right, the superposition of the two was ad-
ditive. The means/standard-deviations for the components of the estimated motion fields are
(0.0002/0.0029, 1.0001/0.0043) and (1.0021/0.0134, 0.0003/0.0129).

pixels and a weight function of ω = 1. Second-order derivatives were obtained by
applying the first order filter two times. Figure 2 shows results for more realistic image
sequences. The Gauss-Seidel iteration (Equation 12) was applied to estimate the motion
fields for both sequences. Gaussian derivatives with σ = 1 and a kernel size of 7 pixels
were used for first order derivatives. Again, second order derivatives were obtained by
applying the first-order filter twice. The parameter λ = 1 and 200 iterations were used.
Even better results could be obtained with optimized filters - see [21] in this volume.

3 Extensions

3.1 Phase-Based Approach

Frequency-domain based approaches to transparent motions are based on the observa-
tion that motion induces a phase shift [8, 14, 22]. For transparent motions, the multiple
phase shifts lead to the following equations.

The Constraint Equations

Ftk
(ω) = φk

1G1(ω) + φk
2G2(ω), k = 0, . . . (18)

To obtain the phase shifts from these constraints, we first simplify notation by setting
Φk = (φk

1 , φk
2) and G = (G1, G2). We then obtain the following expressions:

Ftk
= Φk · G, k = 0, . . . (19)

Our goal now is to obtain the phase-components vector Φ1 = (φ1, φ2) by cancellation
of the unknown Fourier-transforms vector G of the image layers in the system above.
First, we define the polynomial

p(z) = (z − φ1)(z − φ2) = z2 + a1z + a2 (20)
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(a) (b) (c)

(d) (e) (f)

Fig. 2. Results for natural images with synthetic, additive motions (up and to the right): (a) the
central frame of the input sequence; (b) the result of applying α(û) to (a); (c) the result of
applying α(v̂) to (a). The errors/standard-deviations of the estimated motion components are
(0.9956/0.0106, −0.0032/0.0101) and (−0.0101/0.0129, 0.9868/0.0144). Results for a real
sequence: panels (d), (e) and (f) correspond to (a), (b), and (c) above. In this movie, the Mona-
Lisa painting moves to the right and a right-moving box is transparently over-imposed due to
reflections. The quality of the motion estimation is here demonstrated by showing how well the
motion layers are separated.

with unknown coefficients a1 = −(φ1 + φ2), a2 = φ1φ2. Now the phase terms φ1, φ2
are the roots of p(z), i.e., p(φn) = 0, for n = 1, 2. Second, we observe that

Ftm+2 + a1Ftm+1 + a2Ftm = (Φm+2 + a1Φm+1 + a2Φm) · G (21)

= (φm
1 p(φ1), φm

2 p(φ2)) · G = 0 (22)

and

Ftm+2 = −a2Ftm − a1Ftm+1 m = 0, . . . (23)

Solving for the Phase Shifts. To solve for the phase shifts we apply again the strategy
of splitting the problem into linear and nonlinear parts. First, we solve Equations (23)
for a1, a2 (linear part). Second, we obtain the unknown phase changes φ1, φ2 as the
roots of p(z) (nonlinear problem).
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Since we have two unknowns, we need at least two equations for solving for a1, a2.
Therefore we consider the first two Equations of (23), i.e.

(
Ft2

Ft3

)
= −

(
Ft0 Ft1

Ft1 Ft2

) (
a2
a1

)
. (24)

Clearly, we can obtain a1, a2 only if the matrix in the above equation is nonsingular.
Nevertheless, in case of a singular but nonzero matrix, we can still obtain the phase
shifts. To understand why, we will discuss all the cases in which A is singular. First
note that the matrix A nicely factors as

A =
(

Ft0 Ft1

Ft1 Ft2

)
= B

(
G1 0
0 G2

)
BT (25)

where

B =
(

1 1
φ1 φ2

)
. (26)

Therefore,
detA = G1G2(φ1 − φ2)2. (27)

It follows that there are only two non-exclusive situations where the matrix A can be-
come singular: (i) the Fourier transform of at least one layer vanishes at the frequency
ω, and (ii) the phase shifts are equal. Therefore, we have

1. rank A = 1: the possible cases are G1 = 0, G2 �= 0; G1 �= 0, G2 = 0 or φ1 =
φ2, G1 + G2 �= 0 and we can compute the double phase or one of the two distinct
phases from

Ft1 = Ft0φ. (28)

2. rank A = 0: in this case G1 = G2 = 0 or φ1 = φ2, G1 +G2 = 0 and all equations
in (18) degenerate to

Ftk
= 0, k = 0, . . . (29)

Finally, Equation (27) implies that rankA ≤ 1 everywhere if and only φ1 = φ2 every-
where, i.e., the image sequence does not have any transparent layers.

3.2 Layer Separation

Once the phase shifts are known, it is possible to obtain the transparent layers as follows:
(

Ft0

Ft1

)
=

(
1 1
φ1 φ2

) (
G1
G2

)
. (30)

Note, however, that the separation is not possible at all frequencies. The problematic
frequencies are those where two or more phase values are identical because the rank of
the matrix B is then reduced. This is an important observation because it defines the
support where multiple phases can occur by the following equation:

φ1 = φ2 ⇐⇒ ej(u−v)·ωΔt = 1 ⇐⇒ (u − v) · ω = 2kπ, k = 0, . . . (31)

On the above defined lines, the Fourier transforms at the transparent layers cannot be
separated. A possible solution would be to interpolate the values on these lines from the
neighboring frequency values of the separated layers.
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(a) (b) (c)

Fig. 3. Results of layer separation. Shown are in (a) the same input as in Figure 2a, and in (b) and
(c) the separated layers. The errors due to the still incomplete interpolation of missing frequencies
are seen as oriented patterns.

3.3 Block Matching

The Block Matching Constraint. By transforming Equation (23) back to the space
domain, we obtain the following block matching constraint equation for transparent
motions [13]

e(f, x,u,v) = f0(x − u − v) − f1(x − u) − f1(x − v) + f2(x) = 0. (32)

From this constraint a number of different algorithms for the estimation of multiple
motions can be derived. We here present a hierarchical algorithm which is based on a
combination of statistical model discrimination and hierarchical decision making. First,
a single-motion model is fitted to the sequence by exhaustive search. If the fit is poor,
the single-motion hypothesis is rejected and the algorithm tries to fit two transparent
motions. If the confidence for two motions is low, no motion is estimated.

The Stochastic Image Sequence Model. Apart from distortions and occlusions, the
block matching constraint may differ from zero due to noise. Therefore additional in-
formation about the distribution of the noise can help to determine whether or not the
difference between the best block matching fit and the true motion can be explained by
the noise model. Different motion types lead to different noise distributions of the error
signals. This can be used to select the most likely motion model.

We model the observed image intensity at each spatial location and time step as

fk(x) = f̄k(x) + εk(x) , εk(x) ∼ N (0, σ2) , k = 0, 1, . . . (33)

Therefore, from Equation (32) and the noise model, we have

e(f,x,u,v) = e(f̄ ,x,u,v) + ε(x), (34)

where ε(x) = ε0(x − u − v) − ε1(x − u) − ε1(x − v) − ε2(x). Hence, in case of
a perfect match of the transparent motion model, the motion-compensated residual can
be modeled as

e(f,x,u,v) = ε(x) ∼ N (0, 4σ2). (35)
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(a) (b)

Fig. 4. Block matching results. Shown are in (a) the central frame of the same input sequence as
in 1a, and in (b) the estimated motion fields. The area corresponding to the transparent object has
been depicted in (b) for better visualization.

Consequently, the sum of squared differences over the block (denoted BM2) obeys the
χ2 distribution with |Ω| degrees of freedom, i.e.,

BM2(x,u,v) =
1

4σ2

∑

y∈Ω

e(f,y,u,v)2 ∼ χ2(|Ω|), (36)

where Ω is the set of pixels in the block under consideration and |Ω| is the number
of elements in Ω. A block matching algorithm can be obtained by minimization of the
above expression.

If there is only one motion inside Ω, i.e. f1(x) = f0(x − v), the value of

BM1(v) =
1

|Ω|
∑

x∈Ω

(f1(x) − f0(x − v))2 (37)

will be small for the correct motion vector v. If Ω includes two motions, the value BM1
will be significantly different from zero for any single vector v, because one vector
cannot compensate for two motions.

Motion-Model Discrimination. There are several possibilities to find the most likely
motion model. To save computation time, we opt for a significance test which allows
for a hierarchical estimation of the motion vectors. If we allow a percentage α of mis-
classifications, we can derive a threshold TN for BMN , N = 1, 2 as follows [23]: let
the null-hypothesis H0 mean that the model of N transparent motions is correct. TN is
then determined by

prob(BMN > TN |H0) = α. (38)

H0 is rejected if BMN > TN . The threshold can be obtained from tables of the χ2

distribution.

3.4 Experimental Results

Figure 3 shows the separation of a synthetic additive overlaid image sequence. The
missing phase shifts were interpolated by averaging the neighboring values. The
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interpolation errors are visible as oriented structures. A better interpolation method
could help to reduce the errors. Figure 4 shows the results of motion estimation by
block matching with a 5 × 5 window. Full search has been performed to find the best
match according to the confidence test described by Equation (38).

4 Discussion

We have shown how to split the problem of estimating multiple transparent motions
into a linear and a nonlinear part. This strategy has allowed us to extend classical but
powerful algorithms for the estimation of motion to cases where standard single-motion
models would fail. We have thereby reduced the difficulties in estimating multiple trans-
parent motions to well-known difficulties in the standard, single-motion case: noisy
images, aperture problem, occlusion, etc. The algorithms have been presented for two
transparent motions, but are not limited to only two motions since extensions to more
motions are straightforward.

The methods presented for solving the linear part of the problem have particular
trade-offs. The structure-tensor method is fast and accurate but usually does not produce
dense flows; the phase-based method suffers from windowing and fast Fourier transform
artifacts; the regularization approach yields dense flow fields but is slow; and, finally,
the block matching algorithm is very robust to noise but rather slow and does normally
not yield sub-pixel accuracy.

The method proposed for solving the nonlinear part is the key which makes the
overall approach so useful and lets us conclude that the difficulties in the estimation of
transparent motion are, in essence, the same as for the estimation of single motions.

Acknowledgment. We gratefully acknowledge support from the Deutsche Forschungs-
gemeinschaft received under Ba 1176/7-2.
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Abstract. Standard optical flow methods for motion or disparity estimation use
a brightness constancy constraint equation (BCCE). This BCCE either handles a
moving camera imaging a non-moving scene or a fixed camera imaging a moving
scene. In this paper a BCCE is developed that can handle instantaneous motion
of the camera on a 2D plane normal to the viewing direction and motion of the
imaged scene. From the thus acquired up to 5 dimensional data set 3D object
motion, 3D surface element position, and -normals can be estimated simultane-
ously. Experiments using 1d or 2d camera grids and a weighted total least squares
(TLS) estimation scheme demonstrate performance in terms of systematic error
and noise stability, and show technical implications.

1 Introduction

Motion estimation as well as disparity estimation are standard tasks for optical flow
algorithms as well known from early publications (e.g. [18, 25] and many more). This
paper aims to combine both scene flow [36] (i.e. 3D optical flow estimated from 2D
sequences), disparity and surface normal estimation within a single optical-flow-like
estimation step. As the developed model has the same form as usual brightness change
constraint equations (BCCE) no special estimation framework has to be established. We
use the so called Structure Tensor method [3, 17, 20] but other methods can be applied
as well (e.g. the ones in [1, 16]).

In state of the art optical flow algorithms for motion estimation an image sequence
of a single fixed camera is interpreted as data in a 3D x-y-t-space. In this space a BCCE
defines a linear model for the changes of gray values due to local object motion and
other parameters of e.g. illumination changes or physical processes (compare e.g. [15]).
The result of the calculation then is a displacement vector field, i.e. local object motion
and quantities of brightness change if an appropriate model is used. Using a moving
camera looking at a fixed scene identical algorithms can be used to determine object
depth, known as structure from camera motion (e.g. [23]).

The basic idea for the new estimation technique presented here is to interpret the
camera position s = (sx, sy) as new dimension(s), see Fig. 1. Hence all image se-
quences acquired by a multi-camera setup (or a pseudo multi-camera setup as in our

� This work has partly been funded by DFG SPP1114 (SCHA 927/1-2).

B. Jähne et al. (Eds.): IWCM 2004, LNCS 3417, pp. 78–90, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



Towards a Multi-camera Generalization of Brightness Constancy 79

target application mentioned below) are combined to sample a 4D-Volume in x-y-sx-
t-space using a 1d camera grid. If a 2D camera grid is used (as e.g. in [26] ) we get a
5D-Volume in x-y-sx-sy-t-space.

In [6] a 2D-manifold is constructed combining all 1D trajectories of a surface point
acquired by multiple cameras. This comes very close to the idea presented here. The ad-
vantage of our approach is that it is an extension of usual optical flow and consequently
can easily be combined with other methods and extensions stated in the related work
section.

In our target application plant growth shall be studied using a single camera on a
linear XY-moving stage. From other plant growth studies (e.g. [31]) we know that plant
motion can be measured by optical flow using a frame rate of less than one image per
minute. Thus if image sequence acquisition with the moving stage is done within a few
seconds our scene can be interpreted to be fixed for this time interval. Then the acquired
image sequence samples a 4d-volume in x-y-sx-sy-space at a fixed point in time. In the
remainder of this paper we treat our single camera on moving stage setup as a (pseudo)
multi-camera setup acquiring at a single point in time.

Related Work. There is rich literature on optical flow estimation techniques (see the
overviews [1, 16]) and many extensions have been developed. There are extensions to-
wards affine motion estimation [9,10], scene flow [36] and physically motivated bright-
ness changes [7,13,15]. Robust estimations [4,12], variational approaches [5,18,38,39],
coarse-to-fine schemes [2], regularization schemes [22,33], special filters [8,11,21] and
coupled denoising methods [34] have been studied. There already exist frameworks for
simultaneous motion and stereo analysis (e.g. [6, 35, 37]). But to the best of my knowl-
edge neither a BCCE-like model using a 2d camera grid nor a model for simultaneous
estimation of disparity, surface normals, and 3d optical flow has been presented so far.
Preliminary results have been published in [29, 30].

Paper Organization. We start by deriving the new model in 5D (Sec. 2) followed by
a compact revision of the Structure Tensor TLS estimator (Sec. 3). An experimental
validation of four special cases of the novel model within this estimation framework is
presented in Sec. 4. Finally we conclude with summary and outlook in Sec. 5.

2 Derivation of the New BCCE

In this section the novel BCCE shall be developed, given a 3D object/motion model, a
camera model and a brightness change model.

2.1 Object, Camera and Brightness Models

As object/motion model we use a surface element at world coordinate position
(X0, Y0, Z0) with X- and Y -slopes Zx and Zy moving with velocity (Ux, Uy, Uz):

⎛

⎝
X
Y
Z

⎞

⎠ (t) =

⎛

⎝
X0 + Uxt
Y0 + Uyt
Z0 + Uzt + Zx�X + Zy�Y

⎞

⎠ (1)
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Fig. 1. a A camera grid b Projection of a point P by a pinhole camera

where �X and �Y are arbitrary steps in X- and Y -direction, respectively1. Given the
slopes Zx and Zy the surface normal is (−Zx, −Zy, 1).

As camera model we use a pinhole camera at world coordinate position (sx, sy, 0),
looking into Z-direction (cmp. Fig. 1b

(
x
y

)
=

f

Z

(
X − sx

Y − sy

)
(2)

Varying sx and sy at constant time t, e.g. by using a camera grid (see Fig. 1a), is called
instantaneous translation. More general instantaneous motion models can be found e.g.
in [19, 24], including camera rotation, Z-translation and changing focal length.

We sample (sx, sy)-space using several cameras each of which acquires an image
sequence. We combine all of these sequences into one 5d data set sampling the continu-
ous intensity function I(x, y, sx, sy, t). We will now formulate the brightness model in
this 5d space. We assume that the acquired brightness of a surface element is constant
under camera translation, meaning we are looking at a Lambertian surface. In addition
this brightness shall be constant in time, i.e. we need temporally constant illumination2.
Consequently in our 5d space there is a 3d manifold in which I does not change, thus
the total differential dI = 0 in this manifold. The brightness model therefore is

dI = Ixdx + Iydy + Isxdsx + Isy dsy + Itdt = 0 (3)

We use the notation I∗ = ∂I
∂∗ for spatio-temporal derivatives of the image intensities I .

1 These steps are taken implicitly when implementing intensity derivatives at a fixed (x, y)-
image position via convolution kernels, thus we do not add them to the X and Y component.

2 This assumption can easily be relaxed using the approach shown in [15].
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2.2 Combination of the 3 Models into a Single BCCE

In order to derive a single linear equation from the above models, we first apply the
pinhole camera (Eq. 2) to the moving surface element (Eq. 1) and get

(
x
y

)
(sx, sy, t) =

f

Z0 + Uzt + Zx�X + Zy�Y

(
X0 + Uxt − sx

Y0 + Uyt − sy

)
(4)

Consequently we can calculate the differentials dx and dy:
(

dx
dy

)
=

f

Z0 + Uzt + Zx�X + Zy�Y

(
(Ux − Uz

x
f )dt − dsx

(Uy − Uz
y
f )dt − dsy

)
(5)

This equation is nonlinear in Uz . We linearize it via the assumption that Uz is small
compared to the overall depth Z0 >> Uzt and omit Uzt in the denominator. Using the
following notation for image-based expressions

3d optical flow ux = f
Z0

Ux uy = f
Z0

Uy uz = − 1
Z0

Ux

disparity and slopes v = − f
Z0

zx = Zx

Z0
zy = Zy

Z0

local pixel coordinates x = x0 + �x y = y0 + �y

where �x = f
Z0

�X �y = f
Z0

�Y

(6)

we can further approximate

−f

Z0 + Zx�X + Zy�Y
≈ −f

Z0
(1 − zx�X − zy�Y ) = v + zx�x + zy�x (7)

Plugging Eqs. 5–7 into the brightness model Eq. 3 yields the sought for BCCE

0 = Ix(vdsx + (ux + x0uz)dt) + Ix�x(zxdsx + uzdt) + Ix�yzydsx + Isxdsx

+ Iy(vdsy + (uy + y0uz)dt) + Iy�y(zydsy + uzdt) + Iy�xzxdsy + Isy dsy

+ Itdt
(8)

We decompose (and rearrange) this equation into data vector d and parameter vector p:

d = (Ix, Iy, Ix�x, Ix�, Iy�y, Iy�x, Isx , Isy , It)T

p = ((vdsx + (ux + x0uz)dt), (vdsy + (uy + y0uz)dt), (zxdsx + uzdt),
zydsx, (zydsy + uzdt), zxdsy, dsx, dsy, dt)T

(9)

and get the model equation dT p = 0 (cmp. Eq. 10). This linear BCCE can be used
for combined estimation of 3d optical flow (or scene flow) disparity and normal of the
imaged surface element. In order to investigate the different terms and properties of this
model, we will look at several special cases in the experiments Sec. 4. But first let us
briefly review total least squares parameter estimation.

3 Revision of the Structure Tensor

In this total least squares parameter estimation method a model with linear parameters
pj has to be given in the form

dTp = 0 (10)
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with data depending vector d and parameter vector p. Eq. 10 is one equation for several
parameters (the components of the parameter vector) and thus under-determined. In our
case we have one equation for each 4d or 5d pixel. Thus we add the assumption, that
within a small neighborhood Ω of pixels i all equations are approximately solved by
the same set of parameters p. Eq. 10 therefore becomes

dT
i p = ei for all pixels i in Ω (11)

with errors ei which have to be minimized by the sought for solution p̃.
Using a matrix D composed of the vectors di via Dij = (di)j Eq. 11 becomes

Dp = e. We minimize e using a weighted 2-norm

||e|| = ||Dp|| = pTDTWDp =: pTJp
!= min (12)

where W is a diagonal matrix containing the weights. In our case Gaussian weights are
used (see Sec. 4). It multiplies each equation i in Eq. 11 by a weight wi. The matrix
J = DTWD is the so called Structure Tensor. The error e is minimized by introducing
the assumption |p̃| = 1 in order to suppress the trivial solution p̃ = 0. Doing so the
space of solutions p̃ is spanned by the eigenvector(s) to the smallest eigenvalue(s) of J.
We call this space the null-space of J as the smallest eigenvalue(s) are 0 if the model is
fulfilled perfectly, i.e. e = 0. Usually the model is not fulfilled perfectly and the rank
of J has to be determined somehow. In this paper we assume eigenvalues below a given
threshold to be zero, but more sophisticated methods exist, e.g. [14].

Suppose there is enough variation in the data. Then in the case of standard optical
flow the null-space of J is 1D as only data changes with respect to time are regarded
[15]. In our case changes with respect to camera position (1d or 2d camera grid) and
time are considered. Each of these add a dimension to the null-space, consequently it
is up to 3d using the novel BCCE. Therefore we need linear combinations of up to 3
eigenvectors to solve for the parameters.

If there is not enough structure in the data the so called aperture problem occurs.
Then not all parameters can be estimated. This is also known as normal flow case. We
refer to the full flow case only as the handling of other cases can be deduced from
literature (e.g. [32]).

4 Experiments

We want to analyze the properties of this novel model. In order to isolate special be-
haviour, we simplify the model equation to special cases. We use

– a 1d camera grid, no z-motion, and fronto-parallel surfaces (no normals estimated)
to determine how many cameras are needed for high accuracy results (Sec. 4.1),

– a 1d camera grid with z-motion, but still fronto-parallel surfaces to demonstrate the
effect of the linearization via Uz << Z0 (Sec. 4.2),

– a 2d camera grid without any motion and still fronto-parallel surfaces in order to
show how to estimate parameters that multiply occur in the BCCE (Sec. 4.3),

– a 2d camera grid without motion but with estimation of the normals which yield
better depth estimates due to the better fitting surface model (Sec. 4.4).
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The performance of the full model is still under investigation and thus unfortunately is
reserved for the outlook. The first two models are investigated using a synthetic sinu-
soidal pattern fitting the model perfectly. For stability tests we add Gaussian noise to
these sequences. The latter two models are applied to a ray-traced cube sequence.

4.1 1d Camera Grid, No z-Motion, No Normals

This model has first been introduced in [30] where a more detailed analysis can be
found. We get it from Eq. 9 by setting uz = 0, zx = 0, zy = 0, and dsy = 0

d = (Ix, Iy , Isx , It)T

p = ((vdsx + uxdt), uydt, dsx, dt)T (13)

The null-space of the Structure Tensor is 2d for this BCCE. We solve for v via the linear
combination of the eigenvectors spanning this null-space such that the fourth entry is
zero (i.e. dt = 0 and v = p1/p3). The linear combination with vanishing third entry
(dsx = 0) then yields ux = p1/p4 and uy = p2/p4.

We use 2, 3, and 5 cameras in our 1d grid. We then compute the data vector from the
acquired data via optimized derivative kernels [28]:

– For 2 cameras we use separable 3 × 3 × 2 × 3-filters with x-,y-,and t-derivative
[0.5, 0, −0.5] and s-derivative [1, −1] convolved by cross smoothing kernels in all
other directions. The smoothing kernels are [3, 10, 3]/16 in x-, y-, and t-direction,
and [1, 1] in s-direction.

– For 3 cameras we use [0.5, 0, −0.5] as derivative and [3, 10, 3]/16 as cross-smooth-
ing.

– For 5 cameras we use a derivative kernel [0.0838, 0.3324, 0, −0.3324, −0.0838]
and smooth by [0.0234, 0.2416, 0.4700, 0.24156, 0.0234].

The local neighborhood Ω (eq. 11) and weights W (eq. 12) are implemented by bino-
mial filters B with variances σ2 = 2 in x- and y-direction, σ2 = 0 in s- and σ2 = 1
in t-direction. These sizes have influence on the noise stability. It rises with increasing
binomial filter size. As this effect is well known and identical for all camera configura-
tions, we do not illustrate it here. For synthetic data with I ∈ {−1, 1} an eigenvalue of
the Structure Tensor below τ = 0.0012 was considered to be zero.

In order to quantify the accuracy of the algorithm we measure velocity and disparity
of a translating sinusoidal “wave”-pattern I(x, y, sx, t) = cos(kx(x − vsx − uxt)) ∗
cos(ky(y − uyt)) with varying wave numbers kx, ky . To those sequences, normal dis-
tributed noise with a standard deviation up to σn = 0.025 is added. We calculated the
velocity ux and disparity v for an imaginary set of cameras.

Fig. 2 shows the relative error of the calculated velocity ux and disparity v for dif-
ferent wavelengths. The run of the curves agrees well with the comparable calculations
for conventional optical flow [28]. Larger optimized gradient filters have smaller angu-
lar errors3. Therefore the relative errors of disparity v for 3 cameras are significantly

3 Please note, that d has to be normal to p in Eq. 13 and therefore directional errors in the
gradient yield systematic errors in p.
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Fig. 2. Relative errors of the estimated velocity ux and disparity v for 2 (a,b), 3 (c,d) and 5
cameras (e,f) (noise variance σn = 0, wavelength λ)

smaller than for the 2 camera setup. The errors of velocity ux are nearly identical. For
5 cameras the errors of ux and v decrease about 1.5 orders of magnitude.

For noisy data (Fig. 3) the relative error rises. Again it is stable within a percent
region for 2 and 3 cameras and within a per mill region for 5 cameras when ux > 0.01λ
or v > 0.01λ.

As the performance of the method is clearly best when using 5 cameras, we use 5 or
5 × 5 cameras in the remainder of the paper.

4.2 1d Camera Grid with z-Motion, No Normals

This model has first been introduced in [29] where a more detailed analysis can be
found. We get it from Eq. 9 by setting zx = 0, zy = 0, and dsy = 0

d = (Ix, Iy, Ix�x + Iy�y, Isx , It)T

p = ((vdsx + (ux + x0uz)dt), (uy + y0uz)dt, uzdt, dsx, dt)T (14)

The null-space of the Structure Tensor is 2d for this BCCE. We solve for the parameters
using the eigenvectors spanning this space, as above. Knowing u and v we recover 3D
motion and depth in world coordinates using Eq. 6.

Expression (Ix�x + Iy�y)uz occurring in the model dT p = 0 is well known from
affine motion models e.g. [9, 10]). There it is used for divergence estimation.

We implement the derivatives via the 5-tab filters described above (Sec. 4.1) . The
local neighborhood Ω (Eq. 11) and weights W (Eq. 12) were implemented by Gaussian
filters B with standard deviations σ = 6 in x- and y-direction, σ = 0 in s- and σ = 1
in t-direction. These filters B have 25 pixel length for x- and y-direction, 5 pixel
length for t-direction and no filter is applied in s-direction. All other parameters are
as above.
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Fig. 3. Relative errors of the estimated velocity ux and disparity vx for 2 (a,b), 3 (c,d) and 5
cameras (e,f) (noise variance σn = 0.025, wavelength λ)

In order to quantify the accuracy of the used algorithm we measure velocity and
disparity of a translating fronto-parallel sinusoidal ”wave” pattern

I(x, y, sx, t) = cos(KXX) ∗ cos(KY Y )
X = x

f (Z0 + UZt) − UXt + sx

Y = y
f (Z0 + UZt) − UY t

(15)

with wave numbers KX and KY in world coordinates. Compare Sec. 2 for further no-
tation. In our tests we choose f = 10, Z(t0) = 100 at the estimation point of time t0,
UX = 0, UY = 0, UZ = 0 when not varied (all in arbitrary units). Wave numbers kx

and ky in image coordinates are kx = KXZ0 + UZt/f and ky = KY Z0 + UZt/f .
They are chosen to be kx = ky = 2π/λ with λ ∈ {4, 8, 16, 32} pixel at t0. We cal-
culated the 3D velocity U and depth Z for an imaginary set of five cameras. To those
sequences either no noise or Gaussian noise with a standard deviation σn = 0.025 (i.e.
2.5%) is added.

Fig. 4a shows the relative error of the calculated X-velocity UX for different wave-
lengths without noise. This illustrates the systematic error due to numerical and filter
inaccuracies. For UY results are identical. The run of the curves agrees well with com-
parable calculations for conventional optical flow [28]. The error stays below 0.03%
for displacements UX below 4. Then smallest wavelengths produce severe errors as
we come close to (inestimable) displacements near 0.5 λ. If we eliminate these wave-
lengths by smoothing larger displacements can be estimated accurately. Fig. 4c shows
the relative error of the calculated Z-velocity UZ for no noise added. Thus the system-
atic error stays below 0.3% for UZ < 0.1 and below 3% for UZ < 1. We interpret
the increasing error with increasing UZ as the error introduced due to the linearization
assumption UZ << Z0. Fig. 4e shows the relative error of the calculated depth Z for
varying disparity4. As calculations are similar to those for UX and UY error curves are
very similar, too.

4 This can be either due to varying depth or varying baseline width.
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Fig. 4. Relative errors of the estimated velocity components UX , UZ and depth Z, calculated from
synthetic data (Eq. 15) for different noises and wavelengths. Depth error is plotted for varying
disparities f/Z0.

Figs. 4b,d,f show the relative errors for 2.5% noise. This is realistic for CCD cameras
used in our botanical experiments. The relative errors rise severely for small values of
UX , UZ or f/Z0 but stay between 0.1% and 1% for wide ranges of UX , UZ or VX . As
we calculate UX and UY via the optical flow components ux and uy that are affected by
errors in uz, there is an error propagation from UZ to UX and UY . In our target application
usually UZ is very small thus the absolute error propagated to UX and UY is small, too.

4.3 2d Camera Grid Without Any Motion, No Normals

This model is new. We get it from Eq. 9 by setting zx = 0, zy = 0, and dt = 0

d = (Ix, Iy , Isx , Isy)T

p = (vdsx, vdsy, dsx, dsy)T (16)

As this is the first time that a parameter occurs twice in the model, let us for a moment
introduce ”independent” disparities vx and vy via

p = (vxdsx, vydsy, dsx, dsy)T (17)

Again we have a 2d null-space in the Structure Tensor and thus have two eigenvectors
spanning that space. If we choose a linear combination of the two such that the third
entry dsx is zero, we get vy = p2/p4. Similarly we can calculate vx = p1/p3 by setting
dsy = 0. These disparities are the ones we would get, if we had a 1d camera grid,
only. In the 2d case the two disparity estimates are not independent in general. But we
can estimate their covariance matrix (e.g. via [27]) and rotate the coordinate system
such that this matrix becomes diagonal5 (cmp. Fig. 5a). In this coordinate system we

5 If we used an ordinary least squares estimation scheme, this step could be done within the
pseudo-inverse using the Gauss-Markov theorem.
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Fig. 5. Estimation of multiply occurring parameter: a rotation of coordinate system by error co-
variance, b accuracy gain by combination of the estimates, see text for details

can independently estimate disparities v1 and v2 and then combine them into a single
estimate by treating them as independent measurements

v =
v1
e1

+ v2
e2

1
e1

+ 1
e2

(18)

This approach has two benefits. First, the apperture problem is solved automatically,
as this only means that the error of one estimate becomes infinity and the estimate
is neglected. Second, the estimation accuracy slightly improves due to two estimates
instead of one. This is demonstrated in Fig. 5b. It shows histograms of disparities vx,
vy and v estimated from a synthetic, sinusoidal test pattern with 10% Gaussian noise
added (true value v = 1). Although there is no apperture problem and the same data
has been used for all 3 estimates, the histogram of v (solid line) has less variance than
the other two curves.

4.4 2d Camera Grid Without Motion But With Normals

This model is new. We get it from Eq. 9 by setting dt = 0

d = (Ix, Iy, Ix�x, Ix�, Iy�y, Iy�x, Isx , Isy )T

p = (vdsx, vdsy, zxdsx, zydsx, zydsy, zxdsy, dsx, dsy)T (19)

Again we have a 2d null-space in the Structure Tensor and the parameters v, zx and
zy occur twice in the equations. Thus we estimate them using their covariance ma-
trices as above in Sec. 4.3. This model again shows two advantages above the model
from Sec. 4.3. First of course it yields the normals of the surface in addition to its
depth (see Fig. 7). Second, the accuracy of depth estimation increases due to less sys-
tematic errors. This can be seen from Fig. 6, where synthetic images of a cube have
been used for 3d-reconstruction of that cube. Fig. 6b shows the reconstruction us-
ing the model from Sec. 4.3 (Eq. 16). Especially in the steeper, left part of the cube
the surface is less flat than in the reconstruction in Fig. 6c, where the model from
Eq. 19 was applied. Please note, that all parameter settings and the input data are
identical.
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OriginalOriginal no estimation of normalsno estimation of normals with estimation of normalswith estimation of normals

a b c

Fig. 6. Cube experiment: a one image of the input data, b reconstructed surface without normals
in the model, c reconstructed surface with normals in the model

Fig. 7. Cube experiment: reconstructed surface with estimated normals as vectors

5 Summary and Outlook

We have introduced a novel model for simultaneous estimation of scene flow, dispar-
ity and surface normals in multi-camera sequences. We demonstrated its use within
the Structure Tensor estimation framework but due to its BCCE-like form other opti-
cal flow methods as robust estimations, variational approaches, coarse-to-fine schemes
or special regularizations may be applied as well. This will provide additional benefit
e.g. higher robustness and/or faster performance. Using the Structure Tensor we have
investigated special cases of this model. Especially we demonstrated that

– 5 cameras per grid dimension and optimized filters allow for low systematic errors,
– noise stability is as expected for a local TLS-estimator,
– Z-velocity shows increasing errors with increasing value due to linearization,
– using 2d camera grids results in models with multiply occurring parameters, that

need a special estimation treatment,
– surface normals can be estimated within this framework reducing systematic errors.
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In future work, we will investigate the full model, not only special cases. Further we
will investigate additional constraints e.g. enforcing that slopes of the estimated depth
field and the estimated slopes agree.
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Abstract. Image sequence processing techniques are an essential tool for the ex-
perimental investigation of dynamical processes such as exchange, growth, and
transport processes. These processes constitute much more complex motions than
normally encountered in computer vision. In this paper, optical flow based mo-
tion analysis is extended into a generalized framework to estimate the motion
field and the parameters of dynamic processes simultaneously. Examples from
environmental physics and live sciences illustrate how this framework helps to
tackles some key scientific questions that could not be solved without taking and
analyzing image sequences.

1 Introduction

In computer vision motion fields are mostly used to explore 3-D space and dynamic
scenes. Thus one of the most important tasks is the reconstruction of 3-D structure
and 3-D motion fields (“structure from motion”). Mostly only opaque rigid objects are
studied and the requirements for absolute accuracy are not that stringent because the
estimates of the velocity field are integrated into an action-perception cycle. As long as
this cycle converges, the accuracy is sufficient.

For scientific applications, the focus shifts from motion fields to the processes that
cause change and motion in image sequences. Thus the most important task here is not
the determination of motion field itself but the estimation of parameters of dynamic pro-
cesses and the distinction between different models. These processes, such as chemical
reactions, dispersion or growth processes, also change the objects and thus also their
intensities in image sequences. Thus both motion and dynamical processes do change
intensities and it is no longer possible to estimate the motion field or the parameters
of dynamic processes separately. Consequently, it is required to extend motion analysis
into a more general approach that allows for a simultaneous estimation of the parame-
ters of dynamic processes and the motion field.

Such kind of problems occur also in computer vision, when the motion field has to
be estimated in a scene with changing illumination or when other types of complex
motion occur as discussed in this volume. Therefore it can be expected that the analysis
of complex motion in computer vision will benefit from the application to scientific
problems.
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Fig. 1. Image sequence with a traffic scene as a space-time image. On the right side of the cube a
yt slice marked by the vertical white line in the xy image is shown, while the top face shows an
xt slice marked by the horizontal line (after [1]).

This paper consists of two main parts. In the first and major part (Sec. 2), a framework
for the simultaneous estimation of parameters of dynamic processes and the motion
field is presented and illustrated with examples from environmental physics and live
sciences. In the second part (Sec. 3), some practical issues concerning the existence
of a solution and its accuracy are discussed, such as rank-deficit tensors (generalized
aperture problems), biased estimates, optimal filtering, the use of energy tensors instead
of the structure tensor, and global regularization.

2 A Framework for the Estimation of Dynamic Processes

2.1 Local Optimization of Motion Estimation

In this section, well-known low-level motion estimators are represented in a generalized
optimization approach that is suitable to be extended to the estimation of additional
parameters. We start from the basic fact that motion appears as oriented structures in
space-time images (Fig. 1). In the direction of motion the gray values do not change.
Therefore the scalar product of a vector p = [u, v, 1] in the direction of motion is
perpendicular to the spatiotemporal gradient ∇xtg is zero.

In order to find this direction and thus the velocity field u(x, t), the following error
functional can be minimized [1]:

e(x, p) =

∫
w(x′ − x, t′ − t)

∥
∥
∥∇xtg

T p
∥
∥
∥ dNx′dt′ → min (1)
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The spatiotemporal window function w(x′ − x, t′ − t) determines the area in space
and time over which the averaging takes place. For the sake of a compact notation,
windowed integrals as in Eq. 1 are abbreviated by

∫
w(x′ − x, t′ − t) ‖. . .‖dNx′dt′ = ‖. . .‖ (2)

Then Eq. 1 reduces to
e(x,p) = ‖∇xtgT p‖ → min. (3)

Mostly an L2-norm (least squares) is used. Then in Eq. 3 the data term contained
in the spatiotemporal gradient and the parameters to be estimated can be separated
yielding

e2(x, p) = pT Jp with J = ∇xtg∇xtgT . (4)

The symmetric tensor J is known as the structure tensor and has the components

Jpq(x, t) = w(x, t) ∗ (gp(x, t) gq(x, t)) with p, q ∈ {x, t}. (5)

In this equation, the integral over the window function (see Eq. 2) is written as a con-
volution operation and the indices mark first-order derivatives.

The estimation of motion therefore reduces to an eigenvalue analysis of the tensor
J and the eigenvector to the smallest eigenvalue is the parameter vector p that solves
the optimization problem Eq. 3 [2]. This eigenvector is oriented into the direction of
motion. (The eigenvalue solution is equivalent to a rotation of the coordinate system to
principle axes.) In the ideal case of a constant motion in a noise-free image sequence,
the smallest eigenvalue is zero, because the gray values do not change at all in this
direction.

The computation of the structure tensor is straightforward. It can be performed as a
cascade of linear convolution and (nonlinear) point operations as B(Dp · Dq), where B
and D are a smoothing filter of the shape of the window function and a derivative filter
into the directions p and q.

For the further discussion it is important to note that the approach formulated here
incorporates the standard idea of the preservation of optical flow. This can be seen
immediately if the spatiotemporal gradient is split up into the spatial and temporal part
and the vector p is written out. Then Eq. 3 becomes

e(x, u) =

∥
∥
∥∥

∂g

∂t
+ u∇g

∥
∥
∥∥ → min. (6)

2.2 Extension to Dynamic Processes

The extension of Eqs. 3 and 6 for other processes that change gray values is straightfor-
ward. The term in the norm contains an equation for conservation of gray vales:

∂g

∂t
+ u∇g = 0. (7)

When there is only motion, temporal changes can only be caused by moving spatial
gradients. Other terms that change gray values just add additional terms.

The most important processes encountered in scientific applications are briefly
discussed here.
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Fig. 2. Analysis of infrared image sequences of the water surface in the Heidelberg Aeolotron
cooled by evaporation of water from the surface: a example image with a sector of about
0.3 × 0.3 m2 (the temperature is proportional to the brightness of the image), b computed flow
field, and b map of the computed heat flux density at the surface (source term according to Eq. 8)

2.3 Source Terms

A source term directly results in a temporal change of the gray values:

∂g

∂t
+ u∇g = s. (8)

This equation can be reduced to

dT p = 0. (9)

using 4-element data and parameter vectors

d = [gx, gy, gt, −1]T , p = [u, v, 1, s]T . (10)

The data vector contains elements that can be computed from the image sequence and
results in an extended 4 × 4 structure tensor

J = d dT =

⎛

⎜
⎜
⎜
⎝

g2
x gxgy gxgt −gx

gxgy g2
y gygt −gy

gxgt gygt g2
t −gt

−gx −gy −gt 1

⎞

⎟
⎟
⎟
⎠

(11)

as in Eq. 4. Therefore a (total) least squares solution is again given by the eigenvector
to the smallest eigenvalue of J in Eq. 11.

We encountered this type of extension, when analyzing infrared image sequences
taken from water surfaces. A heat flux density at the surface directly causes a temporal
change of the temperature at the water surface. The heat flux density can be negative,
when the surface is cooled, e. g., by emission of radiation or by evaporation of water. An
image from an infrared image sequence taken under this condition, is shown in Fig. 2a.
Using Eq. 8, both maps of the flow field (Fig. 2b) and of the heat flux density (Fig. 2c)
could be computed [3].
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2.4 Relaxation Processes

A first order relaxation process, such as a first-order chemical reaction (we assume that
the gray value in an image is proportional to the concentration of a chemical species),
causes a temporal decay of the concentration proportional to the rate constant λ and the
concentration g:

∂g

∂t
+ u∇g = −λg and d = [gx, gy, gt, g]T , p = [u, v, 1, λ]T . (12)

An ansatz of this form constitutes also an elegant solution for motion estimation with
changing illumination using a multiplicative illumination model. Here λ has the mean-
ing of a temporal rate of change of the illumination [4].

This extension was used for the determination of life times of tropospheric pollu-
tants such as nitrous oxides from spectroscopic satellite image sequences (Sec. 3.1)
and the determination of three velocity components of flow close to a free interface
by a special illumination technique in a flow seeded with small particles and an ab-
sorbing dye [5]. The basic trick with this technique is that the illumination intensity
is decreasing with the distance from the surface due to the absorption of light by the
dye. Then the brightness of a small particle depends on its distance to the surface
according to

g(t) = g0 exp

(
−z(t)

z∗

)
, (13)

where z∗ is the penetration depth of the illumination. If a particle moves perpendicular
to the surface, the intensity change is proportional to the vertical velocity:

dg

dt
= −g0

z∗
exp

(
− z

z∗

)
∂z

∂t
= − w

z∗
g. (14)

This yields

gt + ugx + vgy + w
g

z∗
= 0 and d = [gx, gy, gt, g/z∗]

T , p = [u, v, 1, w]T . (15)

2.5 Diffusion Processes

A diffusion process causes the concentration to spread out according to the instationary
diffusion equation [6]. With such an additional term

∂g

∂t
+ u∇g = DΔg. and d = [gx, gy, gt, gxx + gyy]

T , p = [u, v, 1, −D]T (16)

the flow field u and the diffusion coefficient D can be estimated simultaneously. This
extension is useful for flow analysis with concentration fields, where the diffusion of
the visualized dye cannot be neglected. This is the case, e. g., with microfluidics [7].
Recently, this approach has been extended to handle Taylor dispersion [8].

2.6 Forces and Acceleration

Forces F applied to moving objects cause an acceleration a = [a, b]T of the motion ac-
cording to the law of Newton, F = ma. A direct estimation of acceleration is possible
if not a constant but an accelerated velocity field is modeled according to
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a b c

Fig. 3. Example for the study of flow in sediments. a One of the images of the flow of sand
particles in the sediment observed with an embedded endoscope. b Divergence and c rotation of
the vector field; the scale is included at the top of each image.

∂g

∂t
+ (u + at′)∇g = 0 and d = [gx, gy, gt, gxt′, gyt′]T , p = [u, v, 1, a, b]T , (17)

where a and b are the x and y components of the acceleration vector, respectively, and t′

is a local time coordinate, which is zero in the center of the temporal window function,
see Eq. 1.

2.7 Higher-Order Motion Fields

In a similar but more complex way as in Sec. 2.6, spatially changing motion fields
can be modeled directly. Then the constant velocity in Eq. 7 must be replaced by a
spatially changing velocity field. A motion field with first-order spatial changes that
causes deformation and rotation of objects is described by the matrix

u =

[
a11 a12

a21 a22

]
x′ = Ax′ (18)

and results in
∂g

∂t
+ (u + Ax′)∇g = 0 and (19)

d = [gx, gy, gt, gxx′, gxy′, gyx
′, gyy

′]T , p = [u, v, 1, a11, a12, a21, a22]T ,

where x′ and y′ are local coordinates, which are zero in the center of the local integra-
tion window function w, see Eq. 1. The matrix A contains all possible elementary 2-D
deformations: rotation, dilation, stretching, and shear [9].

If not all four degrees of freedom are possible for a certain process, deformations can
be restricted. An interesting example of this kind is a homogeneous growth process,
e. g., when a plant part is known to grow homogeneously in all directions. Then the
matrix A reduces to a scalar growth parameter r and Eq. 19 reduces to

∂g

∂t
+ (u + rx′)∇g = 0 and d = [gx, gy, gt, gxx′ + gyy′]T , p = [u, v, 1, r]T (20)

The direct estimation of the velocity field and the growth rate is shown in Fig. 4 [10].
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a
b

Fig. 4. a Leaf of a castor-oil plant and flow field due to growth; b growth rate (divergence of the
motion field); the scale for the divergence ranges from -2.0 to 6.0 permille/min

2.8 Generalization

The essential point with all these extensions is that all parameters to be estimated
appear as linear factors with terms that can be estimated from the data. Therefore
the processes can be combined and it is possible to collect all parameters to be es-
timated in a parameter vector p and all data terms in a data vector d. Therefore it
is obvious that this approach can be extended to any type of dynamic processes that
can be described by partial differential equations that are linear in the parameters
to be estimated. Only processes with nonlinear parameters cannot be handled by this
approach.

However, other generalizations are possible. One is the use of multi-component im-
ages. If the parameter of the dynamic process are the same in all components, the
structure tensor can simply be averaged over all components. It might be appropri-
ate to apply a weighting, if the different components have different uncertainties. If
two components differ in a parameter, a joint estimate is still possible. An impor-
tant application are transport processes that involve two species with different dif-
fusion coefficients D1 and D2. The two species are convected by the same veloc-
ity field but the diffusion process is different. Therefore, two continuity equations
are used

∂g

∂t
+ u∇g = D1Δg. and

∂h

∂t
+ u∇h = D2Δh. (21)

with two data vectors

d1 = [gx, gy, gt, gxx + gyy, 0]T , d2 = [hx, hy, ht, 0, hxx + hyy]T ,

but only one parameter vector

p = [u, v, 1, −D1, −D2]T ,
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Fig. 5. Example for the stationary decay curve along a latitudinal section through a NO2 plume
at the eastern shore of the US (after [21])

and the structure tensor J = d1 dT
1 + d2 dT

2 is

J =

⎛

⎜
⎜⎜
⎜
⎜
⎜
⎝

g2
x + h2

x gxgy + hxhy gxgt + hxht gx(gxx + gyy) hx(hxx + hyy)

gxgy + hxhy g2
y + h2

y gygt + hyht gy(gxx + gyy) hy(hxx + hyy)

gxgt + hxht gygt + hyht g2
t + h2

t gt(gxx + gyy) ht(hxx + hyy)

gx(gxx + gyy) gy(gxx + gyy) gt(gxx + gyy) (gxx + gyy)2 0

hx(hxx + hyy) hy(hxx + hyy) ht(hxx + hyy) 0 (hxx + hyy)2

⎞

⎟
⎟⎟
⎟
⎟
⎟
⎠

.

(22)

In this way, the estimation of the motion field utilizes data from both components,
whereas the estimation of the individual diffusion coefficients is influenced only by the
corresponding data.

3 Practical Issues

3.1 Rank-Deficit Generalized Structure Tensors

When the model describes the underlying dynamic process observed by an image se-
quence, the structure tensor has just one small eigenvalue in the ideal case, i. e., its rank
is one lower than its dimension. If this is the case, all parameters can be estimated. In
most cases, however, the rank will be lower.

This is already the case when just the motion field is estimated. At a straight edge, e.,̇g.,
the rank of the structure tensor is 1 and only the velocity component perpendicular to
the edge can be determined (“aperture problem”). With higher-dimensional generalized
structure tensors, it can be expected, that rank-deficit tensors appear even more often.

This is illustrated with an interesting example, where the combination of motion and
a first-order chemical reaction results in a stationary gray value pattern. We assume a
constant motion in x direction and a first-order decay rate λ. Then according to Eq. 12,
a stationary profile occurs when

u
∂g

∂x
= −λg or g = g0 exp[−(λ/u)x]. (23)

Such stationary profiles are indeed observed in satellite image sequences of tropo-
spheric NO2 concentration when plumes generated at the east coast of the USA are
transported to the North Atlantic Ocean by westerly winds. Over the ocean there are no
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sources and the NO2 concentrations decay exponentially due to the combined action of
transport and a first-order decay process.

On the other side, it is often possible to estimate parameters of dynamic processes even
when it is impossible to estimate the full motion field. A simple example of this kind is the
estimation of a homogeneous growth rate. The growth rate can be determined, even if only
one component of the motion field can be computed. Just consider a spatial pattern that
shows spatial variation only in one direction (linear symmetry). Then only the velocity
component in the direction of the variations can be estimated, but not the perpendicular
component. Because the growth rate is homogeneous, it can still be estimated.

3.2 Unbiased Estimation

The eigenvalue analysis gives only unbiased results if the error of all elements of the
data vector are equal. While this is at least approximatively true for the estimation of
the motion fields, it is no longer true if other terms with higher derivatives or terms
without errors are contained in the data vector. Then it is required to apply equilibration
techniques that scale the individual elements in the data vector so that all elements have
equal errors. Alternatively, mixed ordinary least squares (OLS) and total least squares
(TLS) techniques can be used [11].

3.3 Optimal Filtering

From the discussion in Secs. 2.1 and 2.2 it appears that good filters for motion estimation
require perfect derivative operators. Fortunately, this is not true. A more closer look
reveals that a surprisingly general class of filters can be used for the estimation of motion.

Because moving objects appear as oriented structures in image sequences, any oper-
ation on the gray values of image sequences that does not change the orientation of spa-
tiotemporal patterns still will give the same velocity field. Therefore any common linear
prefiltering of the image sequence with a mask b(x, t) does not change the estimated pa-
rameters. A common filter applied to all terms (including the original gray value) results
only in a common factor that does not change the direction of the data vector.

This basic fact has far-reaching consequences for motion estimation. It means that
any set of filters with transfer functions of the form

d(k) = ikpB(k), (24)

provides suitable filter set. The index p refers to any of the directions x, y, and t. The
set of filters in Eq. 24 thus includes the common prefiltering. There is no restriction to
the common filter B(k). As long as it is a smoothing filter, the derivative filters remain
derivative filters. They are just replaced by regularized filter kernels. The common filter
can have, however, any transfer function. Then they are no longer necessarily derivative
filters. It is interesting to note that the same conclusion can be reached by a completely
different train of thoughts as discussed in [12].

The wide degree of freedom for filters opens innovative ways to optimize classes of
filters given the frequency distribution of noise and signals in the image sequence. It
is not surprising that standard derivative filters show considerable errors in the estima-
tion of the direction of the gradient. According to Sec. 2.1, unbiased motion estimates,
however, require unbiased estimates of the direction of the gradient. The Sobel filter,
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Fig. 6. Ring test pattern, the maximum wave number at the edges of the pattern is 0.5, i. e, the
sampling is just 2 samples per wavelength

for example, shows deviations in the direction of the gradient up to 5o [9]. A filter with
the same shape as the Sobel filter

Dx,opt = Dx ∗ By ∗ Bt, Dx =
1

2
[1, 0, −1] , By,t = [p/2, 1 − p, p/2]T (25)

shows a maximum error in the direction of the gradient of only 0.4o with p = 6/16
(Sobel: p = 1/4) [13, 14] under the assumption of isotropic Gaussian noise in the
image sequence.

While the optimization of first-order filters alone is a quite easy task, it is much more
difficult to optimize family of filters that include first-order and second-order filters, as
they are used for the joint estimation of flow and diffusion (Sec. 2.5) and zero-order
(mean) and first-order filters, as they are required for relaxation processes (Sec. 2.4).
Suitable optimizations are discussed in [15].

3.4 Energy Tensor

Recently, a phase invariant extension of the structure tensor was proposed [16], named
the energy tensor. The energy tensor is defined as

E = ∇xtg ∇xtg
T − g Hg =

⎡

⎣
g2

x − ggxx gxgy − ggxy gxgt − ggxt

gxgy − ggxy g2
y − ggyy gygt − ggyt

gxgt − ggxt gygt − ggyt g2
t − ggtt

⎤

⎦ , (26)

where H is the Hesse matrix. The energy tensor can be computed accurately, using the
filter optimization techniques described in Sec. 3.3 if the second-order derivative filters
are computed by consecutive application of first-order filters.
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a b

Fig. 7. Computation of a the trace of the structure tensor (averaged magnitude of the gradient)
and b the trace of the energy tensor (amplitude of gradient)

It is important to note that the energy tensor requires no averaging. Firstly, this con-
stitutes a significant saving in number of computing operations. Secondly, the energy
tensor gives better results. This can be demonstrated by computing the structure tensor
and energy tensor of the ring test pattern in Fig. 6. While the averaging of the structure
tensor is not sufficient at large wavelength (small wave numbers) close to the center of the
ring pattern, this effect does not show up with the energy tensor (Fig. 7). It is, however,
not yet clear, whether the energy tensor can be extended in such a general way as this is
the case with the structure tensor to the estimation of parameters of dynamic processes.

3.5 Generalized Regularization

Because of the sparse local information contained in image sequences, regularization
approaches are required to compute dense motion fields. For the estimation of the para-
meters of dynamic processes, regularization becomes even more important, because more
parameters have to be estimated from the same amount of data. Since the early work
of [17] about global regularization, significant progress has been made. In a recent paper,
[18] showed the equivalence between variational approaches and anisotropic diffusion
and developed a design principle for rotationally invariant anisotropic regularizers.

It is straightforward to extend these concepts to the joint estimation of motion fields
and parameters of dynamic processes because the form of the equations remains the
same, only the number of parameters to be estimated has increased according to the
model for the dynamic process.

In general, a spatiotemporal regularizer that constrains the parameter field is given by

‖dT p‖ + R(∇xtpk) → min, (27)

where R(∇pk) is a generally nonlinear function of the spatiotemporal gradient of all
elements of the parameter vector. Using a regularizer that is simply a sum of squared
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gradients of all elements of the parameter vector α2 ∑
k |∇xtpk|2 is a simple extension

of the homogenous global regularizer used by [17]. There are three ways to vary and
thus optimize the estimate of parameters of dynamic models and in each step homoge-
neous, inhomogeneous, or anisotropic diffusion can be used:

– Direct regularization (prefiltering) of the image sequence data in order to obtain an
optimal unbiased estimate of the data vector given the statistics of noise and signal
in the image sequence.

– Convolution by the window function results in a ‘local’ solution, where the width
and shape of window function determines the degree of local averaging.

– The use of a regularizer functional R as in Eq. 27 finally leads to ‘globally’ con-
strained solution.

4 Conclusions and Outlook

Although a general framework for the estimation of dynamic processes from image
sequences is available and has helped to solve some key problems in environmental
physics and live sciences, there are still many open research problems. Among them are:

More efficient algorithms. More efficient algorithms are required for a more wide-
spread application.

Sparse temporal sampling. As with all optical-flow based techniques, the techniques
described in this paper require temporally densely sampled image sequences. In
many practical applications this requirement cannot be met. Therefore, it is required
to develop suitable multigrid and/or multiscale techniques.

Spherical quadrature filters. The relation between classical optical-flow based and
quadrature-filter based techniques [19] and the recent extension to spherical quadra-
ture filters [20] is not fully understood and requires further attention.

Nonlinear dynamic models. The most challenging problem, however, is the extension
of the techniques described in this paper to nonlinear dynamic models.
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Abstract. We present a variational approach for segmenting the image plane into
regions of piecewise parametric motion given two or more frames from an image
sequence. Our model is based on a conditional probability for the spatio-temporal
image gradient, given a particular velocity model, and on a geometric prior on the
estimated motion field favoring motion boundaries of minimal length.

We cast the problem of motion segmentation as one of Bayesian inference, we
derive a cost functional which depends on parametric motion models for each of
a set of domains and on the boundary separating them. The resulting functional
can be interpreted as an extension of the Mumford-Shah functional from intensity
segmentation to motion segmentation. In contrast to most alternative approaches,
the problems of segmentation and motion estimation are jointly solved by contin-
uous minimization of a single functional. Minimization results in an eigenvalue
problem for the motion parameters and in a gradient descent evolution for the
motion boundary. The evolution of the motion boundaries is implemented by a
multiphase level set formulation which allows for the segmentation of an arbitrary
number of multiply connected moving objects.

We further extend this approach to the segmentation of space-time volumes
of coherent motion from video sequences. To this end, motion boundaries are
represented by a set of surfaces in space-time. An implementation by a higher-
dimensional multiphase level set model allows the evolving surfaces to undergo
topological changes. In contrast to an iterative segmentation of consecutive frame
pairs, a constraint on the area of these surfaces leads to an additional temporal
regularization of the computed motion boundaries.

Numerical results demonstrate the capacity of our approach to segment objects
based exclusively on their relative motion.

1 Introduction

The segmentation of images into meaningful areas can be driven by various low-level
grouping criteria, such as edge information, color information or texture information.
In the present work, we address the question of how to exploit motion information for
the purpose of segmentation.

While traditionally researchers have suggested to first estimate a motion field and to
subsequently segment the scene based on this motion field [35], the problem of motion
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segmentation can be viewed as a chicken and egg problem: Reliable motion estimation
algorithms generally require a region of support (ideally given by a segmentation of the
moving object), while the computation of a segmentation assumes knowledge of the
motion.

Many researchers have addressed this coupling of segmentation and motion estima-
tion. Some have proposed to model motion discontinuities implicitly by non-quadratic
robust estimators [2, 4, 21, 22, 25, 36]. Others tackled the problem of segmenting motion
by treating the problems of motion estimation in disjoint sets and optimization of the
motion boundaries separately [5, 14, 27, 29, 30]. Some approaches are based on Markov
Random Field (MRF) formulations and optimization schemes such as stochastic relax-
ation by Gibbs sampling [20], split-and-merge techniques [15], deterministic relaxation
[3], graph cuts [31] or expectation maximization (EM) (cf. [18, 37]). As pointed out
in [37], exact solutions to the EM algorithm are computationally expensive and there-
fore suboptimal approximations are employed. An elegant method to directly compute
both the segmentation and the motion models was recently proposed in [34], yet this ap-
proach differs from the above approaches in that it does not allow to impose smoothness
of the estimated motion boundaries.

In the present paper, we propose a framework which allows to jointly solve the prob-
lems of segmentation and motion estimation by minimizing a single functional. We
formulate the problem of motion segmentation in the framework of Bayesian inference.
Related Bayesian formulations have been proposed in the discrete MRF framework (cf.
[3]). Our formulation differs from the above approach in that it is continuous, uses a
contour representation of the motion discontinuity set, can be optimized by a simple
and fast gradient descent minimization and is based on a different (normalized) likeli-
hood in the data term. The proposed functional can be interpreted as an extension of
the Mumford-Shah model [24] from the case of gray value segmentation to the case
of motion segmentation. Minimization leads to an eigenvalue problem for the motion
parameters associated with each region, and to a gradient descent evolution for the
boundary separating the regions.

This joint minimization of a single functional with respect to motion parameters and
motion boundaries generates a pde-based solution to the above chicken and egg prob-
lem. The resulting boundary evolution can be interpreted in the way that neighboring
regions compete for the boundary in terms of their motion energy. In analogy to the
corresponding gray value model, which has been termed Region Competition [39], we
therefore refer to this process as Motion Competition.

We propose a multiphase level set implementation of the motion competition func-
tional, which is based on the corresponding gray value model of Chan and Vese [7]. The
level set formulation permits the segmentation of several (possibly multiply connected)
objects, based on their relative motion.

In order to impose temporal regularity of the estimated motion segmentation, we gen-
eralize the motion boundaries from contours in 2D to surfaces in 3D (space and time).
An analogous level set implementation allows to compute several multiply-connected
motion phases representing moving objects or regions over time. The present paper
integrates and extends results presented in [8–12].
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The paper is organized as follows. In Section 2, we formulate motion estimation
as a problem of Bayesian inference. In Section 3, we consistently derive a variational
framework for motion segmentation. In Section 6, we introduce a level set implemen-
tation of the proposed functional. In Section 7, we present an extension to space-time
motion segmentation of videos. Numerical results for simulated ground truth data and
real-world sequences are given in Section 8.

2 From Motion Estimation to Motion Segmentation

2.1 Motion Estimation as Bayesian Inference

Let Ω ⊂ R
2 denote the image plane and let f : Ω × R → R be a gray value image

sequence. Denote the spatio-temporal image gradient of f(x, t) by

∇3f =
(

∂f

∂x1
,

∂f

∂x2
,

∂f

∂t

)t

. (1)

Let
v : Ω → R

3, v(x) = (u(x), w(x), 1)t, (2)

be the velocity vector at a point x in homogeneous coordinates.1

With these definitions, the problem of motion estimation now consists in maximizing
the conditional probability

P (v | ∇3f) =
P (∇3f | v) P (v)

P (∇3f)
, (3)

with respect to the motion field v. For a related Bayesian formulation of motion
segmentation in the discrete case, we refer to [3].

2.2 A Normalized Velocity Likelihood

In the following, we will assume t hat the intensity of a moving point remains constant
throughout time. Expressed in differential form, this gives a relation between the spatio-
temporal image gradient and the homogeneous velocity vector, known as optic flow
constraint:

df

dt
=

∂f

∂t
+

∂f

∂x1

dx1

dt
+

∂f

∂x2

dx2

dt
= vt ∇3f = 0. (4)

The optic flow constraint has been extensively exploited in the motion estimation com-
munity. Following the seminal work of Horn and Schunck [16], researchers commonly
estimate motion fields by minimizing functionals which integrate this constraint in a
least-squares manner (while imposing a smoothness constraint on the velocity field). In
this work, we propose an alternative geometric approach to interpret the optic flow con-
straint. As we will argue in the following, the resulting likelihood is more appropriate
in the context of motion segmentation.

1 For the moment, we are only concerned with two consecutive frames from a sequence. There-
fore we will drop the time coordinate in the notation of the velocity field.
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Except for locations where the spatio-temporal gradient vanishes, the constraint (4)
states that the homogeneous velocity vector must be orthogonal to the spatio-temporal
image gradient. Therefore we propose to use a measure of this orthogonality as a con-
ditional probability on the spatio-temporal image gradient. Let α be the angle between
the two vectors then:

P
(
∇3f(x)|v(x)

)
∝ e− cos2(α) = exp

(
− (v(x)t∇3f(x))2

|v(x)|2|∇3f(x)|2

)
. (5)

By construction, this probability is independent of the length of the two vectors and
monotonically increases the more orthogonal the two vectors. A normalization with
respect to the length of the velocity vector only has been proposed in the context of
motion estimation [1]. For derivations of alternative likelihood functions from gener-
ative models of the image formation process and associated noise models, we refer to
[13, 26, 38].

2.3 A Geometric Prior on the Velocity Field

We discretize the velocity field v by a set of disjoint regions Ωi ⊂ Ω with constant
velocity vi:

v(x) = {vi, if x ∈ Ωi} (6)

An extension to piecewise parametric motion is presented in Section 4. We now as-
sume the prior probability on the velocity field to only depend on the length |C| of the
boundary C separating these regions:

P (v) ∝ exp
(

− ν |C|
)

(7)

In particular, this means that we do not make any prior assumptions on the velocity
vectors vi. Such a prior would necessarily introduce a bias favoring certain velocities.
Priors on the length of separating boundaries are common in the context of variational
segmentation (cf. [6, 19, 24]). For alternative more object-specific priors in the context
of motion segmentation, we refer to [10]. As we shall see in the next section, the choice
of velocity representation in (6) combined with the prior in (7) will transform the motion
estimation framework into one of motion segmentation.

3 A Variational Framework for Motion Segmentation

With the above assumptions, we can use the framework of Bayesian inference to de-
rive a variational method for motion segmentation. The first term in the numerator of
equation (3) can be written as:

P (∇3f | v) =
∏

x∈Ω

P (∇3f(x) | v(x))h =
n∏

i=1

∏

x∈Ωi

P (∇3f(x) | vi)
h

, (8)

where h = dx denotes the grid size of the discretization of Ω.2 The first step is based
on the assumptions that gradient measurements are spatially independent and that the

2 The introduction of the grid size h ensures the correct continuum limit.
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velocity affects the spatio-temporal gradient only locally.3 And the second step is based
on the discretization of the velocity field given in (6).

With the prior probability (7), maximizing the conditional probability (3) with re-
spect to the velocity field v therefore amounts to

max
v

P (v | ∇3f) = max
vi,C

{

e−ν |C|
n∏

i=1

∏

x∈Ωi

P (∇3f(x) | vi)
h

}

. (9)

Equivalently one can minimize the negative logarithm of this expression, which is given
by the energy functional:

E(C, {vi}) = −
n∑

i=1

∫

Ωi

log (P (∇3f(x) | vi)) dx + ν |C|. (10)

With the conditional probability (5) on the spatio-temporal gradient, this gives:

E(C, {vi}) =
n∑

i=1

∫

Ωi

(v t
i ∇3f(x))2

|vi|2 | ∇3f(x)|2 dx + ν |C|. (11)

Let us make the following remarks about this functional:

• The functional (11) can be considered an extension of the piecewise constant
Mumford-Shah functional [24] from the case of gray value segmentation to the
case of motion segmentation. Rather than having a constant fi modeling the inten-
sity of each region Ωi, we now have a velocity vector vi modeling the motion in
each region Ωi.

• Gradient descent minimization with respect to the boundary C and the set of motion
vectors {vi}, jointly solves the problems of segmentation and motion estimation.
In our view, this aspect is crucial, since these two problems are tightly coupled.
Many alternative approaches to motion segmentation tend to instead treat the two
problems separately by first (globally) estimating the motion and then trying to
segment the estimated motion into a set of meaningful regions.

• The integrand in the data term differs from the one commonly used in the optic flow
community for motion estimation: Rather than minimizing the deviation from the
optic flow constraint in a least-squares manner, as done e.g. in the seminal work of
Horn and Schunck [16], measure (5) introduces an additional normalization with
respect to the length of the two vectors. In Section 5.3, we will argue that these
normalization are essential in the case of motion segmentation, where differently
moving regions are compared.

3 Both of these assumptions are known to be inaccurate. More elaborate modeling of spatial
correlations might lead to improved segmentation schemes.
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• The functional (11) contains one free parameter ν, which determines the relative
weight of the length constraint. Larger values of ν will induce a segmentation of
the image motion on a coarser scale. As argued by Morel and Solimini [23], such a
scale parameter is fundamental to all segmentation approaches.

4 Piecewise Parametric Motion Segmentation

Minimizing functional (11) generates a segmentation of the image plane into domains
of piecewise constant motion. In order to cope with more complex motion regions, one
can extend this approach to piecewise parametric motion. An extension of the geometric
reasoning of Section 2.2 to parametric motion models is as follows.

The velocity on the domain Ωi is allowed to vary according to a model of the form:

vi(x) = M(x) pi, (12)

where M is a matrix depending only on space and time and pi is the parameter vector
associated with each region. A particular model which allows for expansion, contrac-
tion, rotation and shearing is the case of affine motion given by the matrix

M(x) =

⎛

⎝
x1 x2 1 0 0 0 0
0 0 0 x1 x2 1 0
0 0 0 0 0 0 1

⎞

⎠ , (13)

and a parameter vector pi = (ai, bi, ci, di, ei, fi, 1) for each region Ωi.
Inserting model (12) into the optic flow constraint (4) gives a relation which – again

interpreted geometrically – states that the the vector M t∇3f must either vanish or be
orthogonal to the vector pi. We therefore model the conditional probability that the
point x ∈ Ω belongs to the domain Ωi by a quantity which only depends on the angle
between pi and M t∇3f :

P (∇3f | pi) ∝ exp
(

− (pt
i M t∇3f)2

|pi|2 |M t∇3f |2

)
. (14)

The corresponding generalization of functional (11) from piecewise constant to
piecewise parametric motion segmentation is given by:

E(C, {pi}) =
∑

i

∫

Ωi

|p t
i M t∇3f |2

|pi|2|M t∇3f |2 dx + ν |C|. (15)

5 Energy Minimization

The functional (15) is of the form

E(C, {pi}) =
n∑

i=1

∫

Ωi

p t
i T (x) pi

|pi|2
dx + ν |C|, (16)
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where, for notational simplification, we have introduced the matrix

T (x) =
∇3f M t M ∇3f

t

|M t ∇3f |2 . (17)

This functional is minimized by alternating the two fractional steps of optimizing
with respect to the motion parameters {pi} for fixed boundary C, and iterating the
gradient descent with respect to C for fixed parameters {pi}.

5.1 An Eigenvalue Problem for the Motion Parameters

The functional (16) can be further simplified:

E(C, {pi}) =
n∑

i=1

p t
i Ti pi

|pi|2
dx + ν |C|, where Ti =

∫

Ωi

T (x) dx, (18)

with T given in (17). For fixed boundary C, i.e. fixed regions Ωi, minimizing this func-
tional with respect to the motion parameters {pi} results in a set of eigenvalue problems
of the form:

pi = argmin
p

pt Ti p

ptp
. (19)

The parametric motion model pi for each region Ωi is therefore given by the eigenvector
corresponding to the smallest eigenvalue of the matrix Ti defined above. It is normal-
ized, such that the third component is 1. Similar eigenvalue problems arise in motion
estimation due to normalization with respect to the velocity magnitude (cf. [1, 18]).

5.2 Motion Competition

Conversely, for fixed motion models pi, a gradient descent on the energy (16) for the
boundary C results in the evolution equation:

∂C

∂t
= −∂E

∂C
= (ej − ek)n − ν

d|C|
dC

, (20)

where the indices ‘j’ and ‘k’ refer to the regions adjoining the contour, n denotes the
normal vector on the boundary pointing into region Ωj , and

ei =
p t

i T pi

p t
i pi

=
p t

i ∇3f M t M ∇3f
t pi

|pi|2 |M t ∇3f |2 (21)

is an energy density.
Note that we have neglected in the evolution equation (20) higher-order terms which

account for the dependence of the motion parameters pi on the regions Ωi. An Eulerian
accurate shape optimization scheme as presented for example in [17] is the focus of
ongoing research.
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The two terms in the contour evolution (20) have the following intuitive interpretation:

– The first term is proportional to the difference of the energy densities ei in the re-
gions adjoining the boundary: The neighboring regions compete for the boundary in
terms of their motion energy density, thereby maximizing the motion homogeneity.
For this reason we refer to this process as Motion Competition.

– The second term minimizes the length L of the separating motion boundary.

5.3 Effect of the Normalization

In Section 2.2 we argued that the proposed likelihood (5) (in contrast to the commonly
used least-squares formulation) does not introduce a bias with respect to the magnitude
of the velocity or the image gradient.4 As a direct consequence, the respective contour
evolutions differ, as we will detail for the case of piecewise constant motion.

The proposed motion likelihood (5) results in a contour evolution of the form (20)
with energy densities

ei =
v t

i ∇3f ∇3f
t vi

|vi|2 |∇3f |2 (22)

This means that the term driving the contour evolution does not depend on the mag-
nitude of the spatio-temporal gradient and it does not depend on the magnitude of the
respective velocity models.

In contrast, a Horn-and-Schunck type likelihood [16] would induce contour driving
terms which do not include the normalizing terms in the denominator:

ei = v t
i ∇3f ∇3f

t vi. (23)

This lack of normalization has two effects on the boundary evolution and resulting seg-
mentation: Firstly the motion boundary will propagate much faster in areas of high gra-
dient. Secondly the evolution direction and speed will be affected by the magnitude of
velocities: regions with larger velocity will exert a stronger pull on the motion boundary.

6 A Multiphase Level Set Implementation

A few years after its introduction in [28], the level set based evolution of contours was
adopted as a framework for image segmentation (cf. [6, 7, 19]). In contrast to explicit
boundaries, the level set representation does not depend on a particular choice of pa-
rameterization. During the evolution of the boundary one avoids the issues of control
point regridding. Moreover, the topology of the evolving interface is not constrained.
This permits splitting and merging of the contour during evolution and therefore makes
level set representations well suited for the segmentation of several objects or multiply
connected objects.

Based on a corresponding gray value model of Chan and Vese [7], we will first
present a two-phase level set model for the motion competition functional (16) with a
single level set function φ. This model is subsequently extended to a multi-phase model
on the basis of a vector-valued level set function.

4 In particular, the functionals (11) and (16) are invariant to global scale transformations of the
intensity: f → γf .
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6.1 The Two-Phase Model

In this subsection, we restrict the class of permissible motion segmentations to two-
phase solutions, i.e. to segmentations of the image plane for which each point can be
ascribed to one of two velocity models p1 and p2. The general case of several velocity
models {pi}i=1,...,n will be treated in the next subsection.

Let the boundary C in the functional (16) be represented as the zero level set of a
function φ : Ω → R:

C = {x ∈ Ω | φ(x) = 0}. (24)

With the Heaviside step function

H(φ) =
{

1 if φ ≥ 0
0 if φ < 0 , (25)

the energy (16) can be embedded by the following two-phase functional:

E(p1, p2, φ) =
∫

Ω

pt
1Tp1

|p1|2
H(φ) dx +

∫

Ω

pt
2Tp2

|p2|2
(
1 − H(φ)

)
dx

+ ν

∫

Ω

∣
∣∇H(φ)

∣
∣ dx. (26)

The first two terms in (26) enforce a homogeneity of the estimated motion in the two
phases, while the last term enforces a minimal length of the region boundary given by
the zero level set of φ.

The two-phase functional (26) is simultaneously minimized with respect to the ve-
locity models p1 and p2, and with respect to the embedding level set function φ defining
the motion boundaries. To this end, we alternate the two fractional steps:

(a) Updating the Motion Models.
For fixed φ, minimization of the functional (26) with respect to the motion vectors
p1 and p2 results in the eigenvalue problem:

pi = argmin
v

vt Ti v

vtv
, (27)

for the matrices

T1 =
∫

Ω

T (x)H(φ) dx and T2 =
∫

Ω

T (x)
(
1 − H(φ)

)
dx. (28)

The solution of (27) is given by the eigenvectors corresponding to the smallest
eigenvalues of T1 and T2.

(b) Evolution of the Level Set Function.
Conversely, for fixed motion vectors, the gradient descent on the functional (26) for
the level set function φ is given by:

∂φ

∂t
= δ(φ)

[
ν div

(
∇φ

|∇φ|

)
+ e2 − e1

]
, (29)
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with the energy densities ei given in (21). As suggested in [7], we implement the
Delta function δ(φ) = d

dφH(φ) by a smooth approximation of finite width σ:

δσ(s) =
1
π

σ

σ2 + s2 . (30)

Thereby the update of φ is not restricted to the areas of zero-crossing, but rather
spread out over a band of width σ around it. Depending on the size of σ, this
permits to detect interior motion boundaries.

6.2 The General Multiphase Model

Compared to the explicit contour representation, the above level set representation per-
mits to segment several, possibly multiply connected, moving regions. Yet, the repre-
sentation of the motion boundary with a single level set function φ permits to model
motion fields with only two phases (i.e. it permits only two different velocity models).
Moreover, one cannot represent certain geometrical features of the boundary, such as
triple junctions, by the zero level set of a single function φ. There are various ways to
overcome these limitations by using multiple level set functions.

An elegant solution to model multiple phases was proposed by Chan and Vese in [7].
Rather than representing each phase by a separate level set function, they introduce a
more compact representation of up to n phases which needs only m = log2(n) level
set functions.5 Moreover, by definition, the suggested approach generates a partition
of the image plane and therefore does not suffer from overlap or vacuum formation,
a difficulty which commonly arises when modeling each region by its own level set
function. We will therefore adopt this representation of Chan and Vese to implement
multiple motion phases, as detailed in the following.

Consider a set of m level set functions φi : Ω → R, let

Φ = (φ1, . . . , φm) (31)

be a vector level set function and let H(Φ) = (H(φ1), . . . , H(φm)) be the associated
vector Heaviside function. This function maps each point x ∈ Ω to a binary vector and
therefore permits to encode a set of n = 2m phases Ωi defined by:

R = {x ∈ Ω | H
(
Φ(x)

)
= constant}. (32)

In analogy to the corresponding level set formulation of the Mumford-Shah functional
[7], we propose to replace the two-phase functional (26) by the multiphase functional:

E({pi}, Φ) =
n∑

i=1

∫

Ω

p t
i T pi

|pi|2
χi(Φ) dx + ν

n∑

i=1

∫

Ω

∣
∣∇H(φi)

∣
∣ dx, (33)

where χi denotes the indicator function for the region Ωi. Note, that for n = 2, this is
equivalent to the two-phase model introduced in (26).

For further details regarding the minimization of this multiphase model, we refer to
[8].

5 During the optimization certain phases may disappear such that the final segmentation may
consist of less than n phases.
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6.3 Redistancing

During their evolution, the level set functions generally grow to very large positive or
negative values in the respective areas of the input image corresponding to a particular
motion hypothesis. Indeed, there is nothing in the level set formulation of Chan and
Vese [7] which prevents the level set functions from growing indefinitely. In numerical
implementations, we found that a very steep slope of the level set functions can even
inhibit the flexibility of the boundary to displace. In order to reproject the evolving level
set function to the space of distance functions, we intermittently iterate several steps of
the redistancing equation [32]:

∂φ

∂t
= sign(φ̂) (1 − |∇φ|) , (34)

where φ̂ denotes the level set function before redistancing. This transformation does
not affect the motion boundaries given by the zero-crossing of φ. It merely enforces the
gradient to be of magnitude 1.

7 Motion-Based Space-Time Segmentation of Videos

The above framework allows to segment images into regions of parametric motion
based on two consecutive frames from an image sequence. Given an entire video se-
quence, one can apply the proposed method iteratively to consecutive frame pairs – see
[9] for details. In practical applications, the inferred contour tends to jitter over time.

Rather than processing the sequence frame by frame, one can impose temporal reg-
ularity of the inferred segmentation by casting the motion segmentation problem as
one of identifying volumes Di ⊂ Ω × [0, τ ] of coherent motion in space-time, where
τ denotes the length of the sequence. Rather than minimizing (16) with respect to a
boundary C, one minimizes by the functional

E(S, {pi}) =
n∑

i=1

∫

Di

p t
i T (x, t) pi

|pi|2
dx dt + ν |S|, (35)

with respect to a surface S ⊂ Ω × [0, τ ] separating the phases Di. The constraint on
the area |S| of the surface imposes regularity of the segmentation both in space and in
time.

The parametric representation of velocity fields (12) can be directly extended into
the temporal domain, thereby allowing to consider the case of accelerated motion with

M(x, t) =

⎛

⎝
1 0 t 0 0
0 1 0 t 0
0 0 0 0 1

⎞

⎠ , (36)

and pi = (u, w, au, aw, 1) modeling an accelerated motion in each domain. Combina-
tions of models of spatial and temporal variation are conceivable to capture accelerated
rotations and other kinds of motion.

For the extension of the multiphase framework of Section 6.2 to propagate motion
surfaces in space-time, the reader is referred to [11].
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Wallpaper image Multiple regions Text regions

Fig. 1. Data for ground truth experiments. Specific image regions of the wallpaper shot (left) are
artificially translated to generate input data.

8 Numerical Results

In the following, we will present numerical results demonstrating various properties of
the proposed framework for motion segmentation.

For all experiments we determined the spatio-temporal image gradient from two con-
secutive images and specified a particular initialization of the boundary (or surface in
the case of space-time segmentation). We subsequently minimized the functionals (33)
or (35) by alternating the three fractional steps of:

– updating the motion models for all phases by solving the corresponding eigenvalue
problem (27),

– evolving the level set functions by iterating the appropriate gradient descent pdes –
e.g. equation (29) in the two-phase case,

– and redistancing the level set functions according to (34).

For all experiments, we show the evolving motion boundaries (and in some cases
also the corresponding motion estimates) superimposed onto one of the frames. It
should be noted that all results are obtained exclusively on the basis of the motion
information.

8.1 Accurate Motion Segmentation Without Features

In order to verify the spatial precision of the motion competition approach, we per-
formed a number of ground truth experiments in the following way. We took a snapshot
of homogeneously structured wallpaper. We artificially translated certain image regions
according to specific motion models. The input image and the respective image regions
are highlighted (in various shades of gray) in Figure 1.

In the first example, we show that one can generate spatially accurate segmenta-
tion results exploiting only motion information, even for image sequences that exhibit
little intensity variation or salient features. Figure 2 shows the contour evolution gener-
ated by minimizing functional (11). The input data consists of two wall paper images
with the text region (Figure 1, right side) moving to the right and the remainder of the
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Fig. 2. Accurate motion segmentation. Contour evolution obtained with functional (26) and pa-
rameter values ν = 0.06, σ = 1, superimposed on one of the two input frames. The input images
show the text region (Figure 1, right side) of the wallpaper moving to the right and the remainder
moving to the left. The motion competition framework generates highly accurate segmentations,
even if the input images exhibit little in terms of salient features. Due to the region-based for-
mulation, the initial contour does not need to be close to the final segmentation. We found that
alternative initializations generate essentially identical segmentation results. The contour evolu-
tion took approximately 10 seconds in Matlab.

image plane moving to the left. Even for human observers the differently moving re-
gions are difficult to detect – similar to a camouflaged lizard moving on a similarly-
textured ground. The gradient descent evolution superimposed on one of the two frames
gradually separates the two motion regions without requiring salient features such as
edges or corner points.

8.2 Segmenting Several Motion Phases

In this experiment, we demonstrate an application of the multi-phase model (33) to the
segmentation of up to four different regions based on their motion information. The
input data consists of two images showing the wallpaper from Figure 1, left side, with
three regions (shown in Figure 1, right side) moving away from the center. The upper
two regions move by a factor 1.4 faster than the lower region.

Figure 3 shows several steps in the minimization of the functional (33) for two level
set functions. Superimposed onto the ground truth region information are the evolution
of the zero level sets of the two embedding functions φ1 (black contour) and φ2 (white
contour), and the estimated piecewise constant motion field indicated by the black
arrows.

Note that the two contours represent a set of four different phases:

Ω1 ={x∈Ω | φ1 ≥0, φ2 ≥0}, Ω2 ={x ∈ Ω | φ1 ≥0, φ2 <0},

Ω3 ={x ∈ Ω | φ1 <0, φ2 ≥0}, Ω4 ={x ∈ Ω | φ1 <0, φ2 <0}.

Upon convergence, these four phases clearly separate the three moving regions and the
static background. The resulting final segmentation of the image, which is not explicitly
shown here, is essentially identical to the ground truth region information. Note that the
segmentation is obtained purely on the basis of the motion information: In the input
images, the different regions cannot be distinguished from the background on the basis
of their appearance.
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8.3 Intensity Segmentation Versus Motion Segmentation

All image segmentation models are based on a number of more or less explicitly stated
assumptions about the properties which define the objects of interest. The motion com-
petition model is based on the assumption that objects are defined in terms of homoge-
neously moving regions. It extends the Mumford-Shah functional of piecewise constant
intensity to a model of piecewise parametric motion.

In this example, we will show that despite this formal similarity the segmentations
generated by the motion competition framework are very different from those of its gray
value analog. The task is to segment a real-world traffic scene showing two moving cars
on a differently moving background. We used two consecutive images from a sequence
recorded by D. Koller and H.-H. Nagel (KOGS/IAKS, University of Karlsruhe).6 The
sequence shows several cars moving in the same direction, filmed by a static camera. In
order to increase the complexity of the sequence, we artificially induced a background
motion by selecting a subarea of the original sequence and shifting one of the two
frames, thereby simulating the case of a moving camera.

Figure 4, top, shows the boundary evolution obtained by minimizing the two-phase
model of Chan and Vese [7] for the first of the two frames. The segmentation process
progressively separates bright and dark areas of the image plane. Yet, since the objects
of interest are not well-defined in terms of homogeneous gray value, the final segmen-
tation inevitably fails to capture them. The dark car in the lower left is associated with
the darker parts of the street, whereas the car in the upper right is split into its brighter
and darker parts.

Fig. 3. Segmenting multiple moving regions. The two input images show the wallpaper of Figure
1, left side, with three circular regions moving away from the center. The magnitude of the veloc-
ity of the upper two regions is 1.4 times larger than that of the bottom region. Superimposed on
the true region information are the evolving zero level sets of φ1 (black contour) and φ2 (white
contour), which define four different phases. The simultaneously evolving piecewise constant
motion field is represented by the black arrows. Both the phase boundaries and the motion field
are obtained by minimizing the multiphase model (33) with parameters ν = 0.05, σ = 2 with
respect to the level set functions and the motion vectors. In the final solution, the two boundaries
clearly separate four phases corresponding to the three moving regions and the static background.

In this example, the cars and the street are moving according to different motion
models. The motion competition framework exploits this property. Figure 4, bottom,

6 http://i21www.ira.uka.de/image sequences/
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Intensity segmentation for the first of two frames.

Motion segmentation generated from both frames.

Fig. 4. Intensity segmentation versus motion segmentation. Two consecutive input frames show
two cars moving to the top right, and the background moving to the bottom left. Top row: Seg-
mentation of the first frame from a traffic scene according to the two-phase level set model of
the piecewise constant Mumford-Shah functional, as introduced by Chan and Vese [7]. The as-
sumption of homogeneous intensity is clearly not appropriate to segment the objects of interest.
Bottom: Motion segmentation of the same traffic scene. By minimizing the motion competition
functional (26) with parameters ν = 1.5, σ = 5, one obtains a fairly accurate segmentation of
the two cars and an estimate of the motion of cars and background. Since the objects of interest
are better defined in terms of homogeneous motion than in terms of homogeneous intensity, the
segmentation is more successful than the one obtained by the analogous gray value model. Until
convergence, the contour evolution took 41 seconds in Matlab on a 2.4 GHz computer.

show the contour evolution generated by minimizing the motion segmentation
functional (26) and the corresponding motion estimates superimposed on the first
frame.

The contour evolution generated by motion competition is fundamentally different
from the one generated by its gray value analog. The energy minimization simultane-
ously generates a fairly accurate segmentation of the two cars and an estimate of the
motion of cars and background. Minor discrepancies of the final segmentation may be
due to several factors, in particular the weak gray value structure of the street, which
prevents reliable motion estimation, and the reflections on the cars which violate the
Lambertian assumption.

8.4 Segmentation by Piecewise Affine Motion

The functional (16) allows to segment piecewise affine motion fields. In particular, this
class of motion models includes rotation and expansion/contraction. Figure 5 shows
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Motion segmentation of a hand rotating around the wrist.

Motion segmentation of a hand moving toward the camera.

Fig. 5. Piecewise affine motion segmentation. Functional (16) allows to segment objects based on
the model of affine motion. The above images show contour evolutions obtained for two image
pairs showing a hand rotating (top) and moving toward the camera (bottom). Minor discrepancies
of the final segmentation (right) are probably due to a lack of gray value variation of the table.
Both results were obtained with the same parameter values (ν = 8 · 10−5, σ = 2). Again
certain areas of little intensity variation do not provide sufficient motion information to be reliably
associated with one or the other motion model.

contour evolutions obtained for a hand in a cluttered background rotating (in the camera
plane) and moving toward the camera. The energy minimization allows to segment the
object and estimate its rotational or divergent motion.

The images on the right of Figure 5 demonstrate that the objects of interest can be
extracted from a fairly complex background based exclusively on their motion. Appli-
cations of such motion-based segmentation schemes to video editing and MPEG com-
pression are conceivable.

8.5 Spatio-temporal Motion Segmentation

While the previous results were obtained using only two consecutive frames from a
sequence, we will now present an application of the segmentations in space-time ob-
tained by minimizing a multiphase implementation of the functional (35) for several
frames of the flower garden sequence [35], which shows a static scene filmed by a mov-
ing camera. Figure 6 shows the evolution of the surfaces separating the motion phases
in space-time (top rows). The lower rows depict the corresponding temporal slices of
these surfaces associated with the frames 2, 5 and 8. During energy minimization, the
surfaces propagate to the final segmentation both in space and in time. The final seg-
mentation clearly separates foreground, midplane and background. The simultaneously
evolving piecewise constant motion field is depicted in Figure 7.
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Evolution of the first spatio-temporal motion interface

Evolution of the second spatio-temporal motion interface

Evolution for frame number 2

Evolution for frame number 5

Evolution for frame number 8

Fig. 6. Spatio-temporal sequence segmentation with the multiphase model. The top rows show
the evolution of the spatio-temporal surfaces given by the zero level sets of two embedding func-
tions φ1 and φ2. The lower rows show various temporal slices of these surfaces, corresponding
to the 2nd, 5th and 8th frame of the sequence. The evolving surfaces propagate both in space and
time during minimization of the energy (35). In the final segmentation the phases clearly sep-
arate foreground, midplane and background. For better visibility, the simultaneously estimated
piecewise constant motion field is shown separately in Figure 7.



Bayesian Approaches to Motion-Based Image and Video Segmentation 121

Fig. 7. Temporal slice through the evolving surfaces shown in Figure 6. The final segmentation
separates the tree in the foreground, the grass in the midplane and the houses and smaller trees in
the background. Boundary and the motion estimates are obtained by simultaneously minimizing
an appropriate cost functional defined on the spatio-temporal image derivatives. Unlike most
alternative approaches to layer extraction, no preprocessing (such as local disparity estimation,
camera calibration and prior rectification of individual frames [33]) is applied to the image data.

9 Conclusion

We derived a variational framework for segmenting the image plane (or the space-time
volume of an image sequence) into a set of phases of parametric motion. The proposed
functional depends on parametric velocity models for a set of phases and the boundary
separating them. The only free parameter in the functional is the fundamental scale
parameter intrinsic to all segmentation schemes.

The motion discontinuity set is implemented by a multiphase level set formulation
(for contours in 2D or surfaces in 3D). The resulting model has the following properties:

• The minimization of a single functional jointly solves the problems of segmentation
and motion estimation. It generates a segmentation of the image plane (or the space-
time volume) in terms of piecewise parametric motion.

• An extension to surfaces in space-time allows to segment moving regions over time,
providing an additional temporal regularity of the segmentation.

• Implicit multiphase representations allow for topological changes of the evolving
boundaries. They permit a segmentation of the image plane (or the space-time vol-
ume) into several (possibly multiply-connected) motion phases.

• Local minimization of the proposed functional results in an eigenvalue problem for
the motion vectors, and an evolution equation of the level set functions embedding
the motion boundary.

• Due to the region-based homogeneity criterion rather than an edge-based formula-
tion, motion boundaries converge over fairly large spatial distances.

• Segmentation and motion estimates can be generated from two consecutive frames
of an image sequence. Therefore the approach is in principle amenable to real-time
implementations and tracking.

Acknowledgments
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Abstract. We present global variational approaches that are capable of extract-
ing high-resolution velocity vector fields from image sequences of fluids. Starting
points are existing variational approaches from image processing that we adapt
to the requiremements of particle image sequences, paying particular attention to
a multiscale representation of the image data.

Additionally, we combine a discrete non-differentiable particle matching term
with a continuous regularization term and thus achieve a variational particle track-
ing approach.

As higher-order regularization can be used to preserve important flow struc-
tures, we finally sketch a motion estimation scheme based on the decomposition
of motion vector fields into components of orthogonal subspaces.

1 Introduction

Many fields of application require the accurate determination of flows in fluids. In
many of these scenarios, DNS computations (direct simulation of the Navier-Stokes
equations) are error-prone, caused by high Reynolds numbers or unknown boundary
conditions, or not sufficient if, for instance, one is interested in time-resolved velocity
data. Imaging measuring methods are used more and more frequently as the technol-
ogy is progressing with respect to required components such as lasers, CCD cameras,
computers and control logics.

In order to be able to extract the motion field, the scene has to be modeled and
filmed: First the flow medium is seeded with particles. Then whole velocity fields are to
be measured by taking two or more images of the flow, one shortly after the other, and
calculating the distance the individual particles have travelled within this time period.
Figure 1 shows a typical experimental setup in a wind tunnel. The velocity is calculated
from the known time difference and the measured displacement. To avoid blurred im-
ages when the flow is fast, laser pulses are used. As they are only 6-10 ns long, they are
capable of freezing any motion.

The terms particle image velocimetry (PIV) and particle tracking velocimetry (PTV)
denote established classes of image processing methods for extracting the underlying
velocity fields in these kinds of images. PIV methods operate on gray-level images,
while PTV approaches determine the flow field by tracking individual tracers [1].

B. Jähne et al. (Eds.): IWCM 2004, LNCS 3417, pp. 124–145, 2007.
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Fig. 1. Left: Experimental setting to study the flow perpendicular to a short cylinder with one
endplate and one open end. This setting results in an unsteady, threedimensional flow structure
which can only be investigated using advanced imaging measuring techniques. Right: Schematic
illustration of the observed flow [2].

1.1 Cross-Correlation PIV

Cross-correlation PIV has become the best-known and most widely used experimen-
tal method for flow estimation: First, the images are split into multiple windows -
so-called interrogation windows. For each pair of corresponding windows, a discrete
cross-correlation is computed.

However, despite the success of this technique and numerous investigations into im-
provements (which are summarized in [3]), it suffers from some fundamental
limitations:

– Limits in spatial resolution: The partitioning of the image by interrogation areas
must not be too fine if you want to detect correlation peaks reliably. This unavoid-
ably limits the spatial resolution of the estimated motion vector field. The advanced
hierarchical schemes described in [3] offer the possibility of ending with very small
interrogation areas. However, even in these high-performance techniques, post-
processing is neccessary to detect erroneous motion vectors.

– Limits in accuracy: The size of the interrogation areas determines a spatial scale
at which the variation of motion vector fields is (tacitly) assumed to be negligible.
This assumption is erroneous and proves inaccurate in many relevant situations.
Many authors have concentrated on iterative window deformation methods of 1st

or 2nd order that deal with this problem [3].
– Outliers: Motion estimation is carried out regardless of spatial context. As a con-

sequence, prior knowledge about spatial flow structures cannot be exploited dur-
ing estimation, and missing motion estimates in image regions where a correlation
analysis yields no reliable estimates, have to be heuristically inferred in a post-
processing step.

1.2 PTV

While nearly all PIV algorithms base on the sketched cross-correlation method, PTV
methods are more manifold. They are traditionally either based on nearest-neighbour
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search with geometrical constraints (using four or more consecutive frames) [4,5], or on
binary-image cross correlation (two frames) [6] which computes the cross-correlation
between regions around particles in the first and in the second frame. More recent
approaches include relaxation methods that analyse the probability of particle match-
ing [7]. Basically, all these methods have two assumptions in common:

– Small displacements: while nearest-neighbour search algorithms directly rely on
small displacements from one frame of an image sequence to the next (in propor-
tion to the particle density), binary-image correlation methods and relaxation meth-
ods both search for possibly corresponding particle images in a certain “tracking
range”.

– Smoothness of motion: nearest-neighbour search algorithms assume that a particle
changes its motion during an image sequence only smoothly. A similar assumption
that tacitly underlies binary-image correlation methods is that the particles within
a correlation window move with the same speed (if not, the correlation coefficient
would not peak). Finally, using relaxation methods, a matching is considered prob-
able if the movement of particles in a certain region can be reduced to a simple
translation.

Due to the “small displacement” assumption, PTV is traditionally applied in situations
of low seeding density (compared to the velocity). As it is, however, able to generate
a higher resolution than PIV, it can be eventually used to increase the resolution of
the PIV output [8, 9]. Furthermore, in 3D, PTV can be supported and combined with
stereoscopic analysis and 3D reconstruction.

1.3 Variational PIV/PTV

The term Optical Flow u(x, t) = (u(x, y, t), v(x, y, t))� denotes the estimation of the
induced velocity vector field caused by a relative motion between camera and scene.
Global variational approaches for estimating of the optical flow were introduced by
Horn & Schunck in 1981 [10]:

J(u) =
∫

Ω

{(∇f�u +
∂f

∂t
)2

︸ ︷︷ ︸
data term

+λ (|∇u|2 + |∇v|2)
︸ ︷︷ ︸
smoothness term

}dx, 0 < λ ∈ R (1)

The basic idea is not to estimate displacement vectors locally and individually, but to
estimate vector fields as a whole by minimizing (1). The data term is based on the as-
sumption of gray value conservation of f(x(t), t). The smoothness term causes spatial
coherence of the vector field, making corresponding post-processing steps in connec-
tion with traditional local PIV approaches obsolete. The basic approach (1) has been
generalized over the years: data-driven control of the smoothness term [11, 12, 13],
specification of conditions under which the approach is well-posed [12], detection of
motion boundaries by minimizing convex non-quadratic smoothness terms [14,15] and
use of spatio-temporal smoothness terms [16]. [17] gives an overview.

Organisation. Section 2 summarizes a PIV approached based on variational optical
flow estimation and its adaption to the specific grayvalue-functions induced by particles
in PIV image pairs [18, 19].
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Fig. 2. Black circles denote particle positions in the first frame, white circles denote positions
in the second frame. Left: Simple nearest-neighbour search yields mismatches. Right: Nearest-
neighbour search followed by regularization with smoothness constraint. In the next iteration, T2
will find the correct match.

Section 3 generalizes the class of variational approaches to Particle Tracking Ve-
locimetry. To this end, we have to replace the continuous data term of variational ap-
proaches to PIV with a discrete non-differentiable particle matching term for PTV. This
raises the problem of minimizing such data terms together with a continuous regulariza-
tion term. We accomplish this with an advanced mathematical method which guarantees
convergence to a local minimum of such a non-convex variational approach to PTV. Fig-
ure 2 illustrates the basic behaviour of this new type of variational approaches to PTV.
On the left, figure 2 depicts a common situation where particle matching by nearest-
beighbor search fails. The variational PTV-approach presented in this paper is able to
avoid, and even to revise, such erroneous local decisions through the smoothness term
(figure 2, right). A key advantage in our opinion is that all “rules” guiding the match-
ing of particles are encoded by the choice of a smoothness term which, in turn, can be
related to physical properties of the underlying fluid, like low divergence for example.

From numerical fluid dynamics, in turn, it is well known that standard discretizations,
like piecewise linear finite elements, are not appropriate. Imposing the constraint of
vanishing divergence, for example, may result in a constant flow. In section 4, we will
therefore sketch how the mimetic finite difference method can be used to discretize
higher order regularizers and physically plausible constraints, like vanishing divergence
of the flow.

2 Variational Optical Flow Estimation

2.1 Adaption to PIV Data

The accuracy of motion estimation critically depends on the magnitude of image mo-
tion. In fact, depending on the spatial image frequency, very large motions even may
cause aliasing along the time frequency axis. Due to the Nyquist-condition |ωt| < π
(with ωt := ωxu), only motions up to |u| < π/ωx are correctly represented by sam-
ples of the signal.1 Faster motions lead to aliasing. In other words, for a fixed global
velocity, spatial frequencies moving more than half of their period per frame cause

1 Without loss of generality we assume sampling rates Δx = Δt = 1.
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temporal aliasing. In practice, this upper bound has to be lowered because derivatives
of the signal can only be robustly estimated in connection with low-pass filtering.

As a remedy, we first compute a coarse motion field by using only low spatial fre-
quency components and “undo” the motion, thus roughly stabilizing the position of the
image over time. Then the higher frequency subbands are used to estimate optical flow
on the warped sequence. Combining this “optical flow correction” with the previously
computed optical flow yields a refined overall optical flow estimate. This process may
be repeated at finer and finer spatial scales until the original image resolution is reached
[20,21]. A standard technique for generating multi-scale representations in this context
is to construct an image pyramid (fig. 3) by recursively applying lowpass filtering and
subsampling operations. Note that the images at different scales are represented by dif-
ferent sampling rates. Thus, the same derivative filters may be used at each scale and
we do not have to design multiple derivative filters, one for each different scale. Let us
define the pyramid representation of a generic image f of size nx × ny . Let f0 = f
be the ”zeroth” level image. This image is essentially the highest resolution image
(the raw image). The image width and height at that level are defined as n0

x = nx and
n0

y = ny . The pyramid representation is then built in a recursive fashion: Compute f1

from f0, then compute f2 from f1, and so on ... . Let k = 0, 1, 2, ..., L − 1 be a generic
pyramidal level, and let fk be the image at level k. nk

x and nk
y denote the width and the

height of fk. First the lowpass filter [1/4 1/2 1/4] × [1/4 1/2 1/4]� is used for im-
age anti-aliasing before image subsampling. Then a bilinear interpolation performs the
adaption to the new coarser grid, as every new vertex is located exactly in the middle
of four finer vertices (if the respective image size is even-numbered, cmp. fig. 4). This
procedure results in a convolution mask of [1/8 3/8 3/8 1/8] × [1/8 3/8 3/8 1/8]�.
In the first step the optical flow between the top level images fL−1

1 and fL−1
2 (low-

est frequency images) is computed,using the variational approach (1). The computed
coarse-level flow field must then be projected onto the next finer pyramid level. This
flow field estimate is used to warp the second image towards the first image:

W{fL−1
2 , dL−1}(x, y, t+Δt) = fL−1

2 (x−uΔt, y−vΔt, t+Δt), dL−1 =
(

u

v

)
(2)

Fig. 3. Image Pyramid: Each level in the
pyramid is a subsampled version of the
level below convoved with a Gaussian filter

Level 3

Level 2

Level 1

Level 0

Fig. 4. Image Pyramid: Location
of the vertices in the respective
levels
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At pyramid level L − 2, we compute a new and finer flow field between the images
fL−2
1 and W{fL−2

2 , dL−1}. While the expression to be minimized is analogous to (1),
the first-order Taylor series expansion is performed around (x + dL−1(x), t + 1). This
results in the cost functional:

J(u, v) =
∫

Ω

{[
∇f ·

(
u
v

)
+∂tf

]2+λ
(
|∇(u+dL−1

u )|2+|∇(v+dL−1
v )|2

)}
dxdy (3)

with 0 < λ ∈ R. The unique flow field minimizing (3) is the correction-field ΔdL−2 of
the coarser flow dL−1. To obtain the overall flow field dL−2 at level L − 2 we have to
add the coarse motion dL−1 and the correction field ΔdL−2:

dL−2(x, y) = dL−1(x, y) + ΔdL−2(x, y) (4)

This correction process is repeated for each level of the pyramid until the finest pyra-
mid level d0 has been reached. Details about the discretization can be found in [18].
In the experimental evaluation section below, we will refer to this approach as Horn
& Schunck Multi-Resolution (H&S R). So far, we have introduced a dyadic pyramid
structure which is equivalent to using lowpass filters with bandwidths Ω

2L−1 , Ω
2L−2 , ...,

Ω
21 , Ω

20 combined with subsampling. Now we introduce additional filters that slice the
bandwidth into even smaller pieces, e.g. Ω/4, 3/8Ω, Ω/2, 3/4Ω, Ω. In order to im-
plement these extra steps which do not fit into the dyadic pyramid structure, we apply
at each pyramid level pre-filters when estimating derivatives: The lower the cut-off fre-
quency of the pre-filter, the more the particles seem to melt down and form a smooth
gray value structure. A coarse motion estimate can reliably be computed using this
structure. Then, we update and refine the motion field (in the same way as described
in detail for the multi-resoluion case) using the less low-pass filtered image derivatives.
For the experiments in this paper, we use nine scale-space levels and thus nine dif-
ferent filters with cut-off frequencies of π

2 , 9
16π, 5

8π, 1116π, 3
4π, 13

16π, 7
8π, 15

16π, π. An
inverse Fourier Transform yields the filter coefficients. Low pass filtering with cut-off
frequencies below π/2 is not neccessary since this is what the anti-aliasing filter of the
preceding lower resolution level has already done. Below, we will refer to this combined
approach as Horn&Schunck Multi-Resolution + Multi-Scale (H&S R+S).

2.2 Experimental Evaluation

In this section, we report comparisons of the variational approach with two other ap-
proaches for various data sets.

Data. The experimental evaluation was carried out on the basis of the following data
sets:

– Synthetic Data: The “Quénot image pair” was introduced in [22] and is avail-
able on the internet. The analyzed velocity field (av. velocity = 7.58 px./frame) is
taken from a numerical solution obtained for two-dimensional flow around a pair
of cylinders. We examined different test cases:
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• Perfect: “Perfect” case means that the second image was computer-generated
from the first image and the target flow field.

• Mixed N%: The specified percentage of noise was superimposed. Addition-
ally, the specified percentage of particles was randomly removed and the same
amount of particles was randomly added.

– Real world image: We will also analyze an image from a time-resolved PIV mea-
surement of periodically vortices in the transitional cylinder wake [23, 24]. The
mean displacement is about 9 px./frame and the maximum displacement about 16
px./frame.

Approaches and Parameter Settings. The data sets described above were evaluated
using the following approaches and parameter settings:

– Variational approach: The spatial (∇f ) and temporal (∂tf ) derivatives were es-
timated using derivative of Gaussian filters of size five at every point in the image
domain. In a first series of experiments (H&S R) five resolution levels were used,
in a second series of experiments (H&S R+S) a setup of five resolution levels and
nine scale space levels on every resolution level was chosen. For the Quénot image
pair computations, the smoothness parameter λ was set to 7 ∗ 10−4 in the H&S R
case and to 7 ∗ 10−3 in the H&S R+S case. For the real world image pair only H&S
R+S computations were performed. The smoothness parameter λ was also set to
7 ∗ 10−3 in these rows of experiments. The gray values were scaled in each case to
the interval [0, 1].

– DIPV approach: For comparison we took the error measures of the classical 2D
FFT based digital particle image velocimetry (DPIV) method from [22] in the syn-
thetic test cases. Two different interrogation window sizes were applied: 32 × 32
pixel (DPIV 32) and 48 × 48 pixel (DPIV 48). We analyzed the “cylinder wake”
real world image pair using a hierarchical DPIV approach with an interrogation
window size beginning with 512 × 512 pixels and ending up with 64 × 64 pixels
with window-shifting and peak-height validation.

– ODP2 approach [25]: We considered also the results of a dynamic programming
based optical flow technique. This approach transforms the two-dimensional corre-
spondence problem to a sequence of one-dimensional search problems. It has been
successfully applied to PIV in [22, 26].

Error Measures. As quantitative error measures we computed the angular error (be-
tween correct and computed motion vectors) as defined in [27] along with its standard
deviation as well as the mean velocity error (L1 norm of the difference between the
correct and computed velocities in px./frame). The error measure was computed for the
whole image except for the inner circular regions corresponding to the cylinders.

Numerical Results and Discussion. Table 1 summarizes the error measures for
Quénot’s image pair and their standard deviation (±) 2. Furthermore, typical execution
times of the respective algorithms are indicated. Note that DPIV yields a sparse vector

2 Error measures for the three algorithms not implemented by the authors were taken from [22],
the execution times from [28].
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Table 1. Angular error and absolute displacement error. Best performance for every setting is
marked in bold.

DPIV32 DPIV48 ODP2 H&S R H&S R+S
Perfect angle 5.95 ± 13.9 9.35 ± 18.3 1.23± 2.24 2.32 ± 3.69 1.42 ± 2.16

disp 0.55 ± 0.94 0.87 ± 1.46 0.13± 0.10 0.39 ± 0.66 0.19 ± 0.18
Mixed 5% angle 6.40 ± 14.4 9.59 ± 19.0 1.77 ± 2.87 3.04 ± 4.38 1.54± 2.34

disp 0.60 ± 1.12 0.86 ± 1.51 0.20± 0.13 0.52 ± 0.80 0.21 ± 0.30
Mixed 10% angle 10.2 ± 19.6 11.3 ± 20.8 4.30 ± 11.7 4.39 ± 5.89 1.81± 2.74

disp 0.91 ± 1.89 0.93 ± 1.66 0.57 ± 1.71 0.78 ± 1.07 0.26± 0.46
Mixed 20% angle 40.8 ± 34.5 38.3 ± 29.7 6.15 ± 9.01 9.33 ± 9.93 2.96± 4.23

disp 3.73 ± 4.39 2.49 ± 3.19 0.74 ± 0.52 2.03 ± 2.13 0.39± 0.53
Time 10 min 10 min 20 min 16 sec / 2 sec 2 min / 15 sec

field whereas both ODP2 and H&S compute dense vector fields. All of the tested algo-
rithms are (in varying degrees) sensitive to superimposed noise. In the case of DPIV,
extending the interrogation window size increases the robustness to noise while de-
creasing the accuracy at the same time. However, irrespective of the window size the
performance of DPIV is much worse than the performance of the other approaches.

We realize that H&S R+S provides much better results than H&S R in all test cases.
This had to be expected because temporal aliasing as well as linearization errors of the
optical flow approach are suppressed by additional scale space computations. Fig. 5

Fig. 5. Results for the Quénot image pair “Mixed 20%”. Estimated flow field with H&S R+S
(left), absolute displacement error (right).

shows the results for the “Mixed 20%” case. One can see that the highest estimation
errors are reached at the borders of the cylinders. The smoothness term penalizes the
discontinuities at these locations and smoothes over the discontinuities. The error at re-
gions close to the left cylinder is the highest because of the high velocity of the fluid.
Possible solutions to this problem include the insertion of border conditions and higher
order regularization (cmp. sec. 4).

ODP2 provides the best result for the “perfect” test case. However, it is much less
robust to noise than H&S: While the error measures of the variational coarse-to-fine
approach are slightly higher in the perfect case (cf. table 1), this changes with the pres-
ence of noise. The error for the ODP2 approach then rises much faster so that, for noise
rates of 5 % and above, the H&S R+S approach provides better results. This gap rises
even more for higher amounts of noise. Since noise is always present in real world im-
ages pairs, we expect the H&S algorithm to perform better than both the DPIV and the
ODP2 approaches.
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When we use a preconditioned conjugate gradient method to solve the H&S system
matrices, the execution time of our algorithm is about 16 sec for H&S R and 2 min for
H&S R+S (when choosing a residual error of 10−4 as a stopping criterion). Using a
multi-grid approach [29, 30] to solve the linear systems, the computation time of H&S
R is approx. 2 sec, while the H&S R+S computation takes about 15 sec on an up-to-date
computer. Information about the different multi-grid cycles and stopping criterions can
be taken from [31]. Even real time operation can be achieved through parallelization
using domain decomposition [32].

Figures 6 and 7 show the results for the real world image pair (“cylinder wake”) com-
puted with H&S R+S and DPIV, respectively. One can clearly see that the variational ap-

Fig. 6. Dense vector field computed with the
variational approach

Fig. 7. None-dense vector field computed with
DPIV

proach resembles the true motion field much better than the cross-correlation approach.
At regions with abruptly changing motion (i.e. the turbulence emerging behind the cylin-
der in the middle of the image), the DPIV method is not able to accurately determine
the velocity field. This is mainly due to the limited spatial resolution which leads to a
violation of the assumption of a constant velocity inside interrogation windows at these
locations. The statistical character of correlation-based processing, however, prohibits
the use of smaller interrogation windows. Furthermore, in regions dominated by out-
of-plane velocities (i.e. at the left border of the image), the cross correlation approach
fails as well: Since no global velocity information is used, the probability of outliers is
markedly increased at these locations, hence a valid flow field cannot be computed.

3 Variational PTV

3.1 General Problem Formulation

Let S denote the coordinates of the extracted particles in the first image of an image
pair, and T denote the coordinates of the extracted particles in the second image. Then,
we define the distance of a specific particle with coordinates Si to T by
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dT (Si) := d(Si, T ) = inf
Ti∈T

d(Si, Ti),

where d(Si, Ti) is just the Euclidean distance. Therefore, the target velocity field u
(where ui denotes the displacement of particle Si from frame 1 to frame 2) minimizes
the accumulated distance function

D(u) =
M∑

i=1

dT (Si + ui) (5)

where u = u1, u2, ..., uM , and where M is the number of extracted particles in
image 1.

Unfortunately, minimization of (5) is a highly non-convex problem, as every other
possible matching minimizes the equation as well. The local minimum is just the
“nearest-neighbour” solution. Therefore, we define a convex attraction potential as an
increasing continuous function that attracts every particle to its closest neighbour:

Elocal(u) =
M∑

i=1

α

2
(
dT (Si + ui)

)2
(6)

Until now, the particles are only attracted to their nearest neighbours and the mini-
mization of (6) is trivial. This is why we have to make an additional assumption about
u. The prototypical assumption that we want to make use of in this paper is the assump-
tion of smoothness. We will show in section 4 that other assumptions (that include e.g.
physical knowledge) can also be exploited.

However, rather than considering vector fields that are close to constant in a small
region (the predominant assumption in PTV) we want to rule out too irregular vector
fields by minimizing the magnitudes of the spatial (and, in case of image sequences,
spatio-temporal) gradients of u:

Eglobal(u) =
∫

Ω

N∑

j=1

|∇uj(s)|2ds. (7)

Please note that u = (u1, u2, ..., uN)�, where N indicates the dimensionality of the
problem (N is usually 2 or 3). The integration variable s is for image pairs in 2D

s =
(
x, y

)�
, and in 3D s =

(
x, y, z

)�
, where x, y and z denote the spatial coordinates

within the domain Ω. For image sequences follows s = (x, y, t)� in 2D, and s =
(x, y, z, t) in 3D, where x,y and z denote the spatial coordinates, and t the temporal
coordinate (t = [1, 2, ..., T ]).

Equations (6) and (7) can be combined into the variational framework

E(u) = Eloc.(u) + λEglob.(u) =
M∑

i=1

α

2
(
dT (Si + ui)

)2

︸ ︷︷ ︸
data

+λ

∫

Ω

N∑

j=1

|∇uj(s)|2ds

︸ ︷︷ ︸
regularization

,

(8)
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where Elocal is called “data term” which incorporates local information, and Eglobal is
the global regularization term. In this work, the so-called smoothness parameter λ ≥ 0
is considered a user parameter that controls the smoothness of the resulting velocity
field. If we choose λ = 0, no regularization is performed. The reconstructed velocity
field is therefore just the “nearest neighbour” solution, as the locally optimal solution
for every particle in image 1 is the matching with its nearest neighbour in image 2.

3.2 Outlier Treatment

An important problem in the PTV analysis is raised by the fact, that usually not all
the particles are detected correctly. In 2D it may happen that a particle is visible in
the first frame, but moves out of the illuminated plane and is therefore not visible (or
beneath the threshold) in the second frame. In 3D, additional problems occur when the
3D reconstruction fails, e.g. due to a very high particle density. Further problems arise
from particle images tending to coalesce.

We can distinguish between two likely error scenarios:

– A particle is extracted from the second image, but not from the first image: in this
case the proposed algorithm can still estimate a reliable velocity field, as it searches
matches for all particles in the first frame.

– A particle is visible only in the first frame but not in the second frame: in this error
case, the nearest-neighbour search (10) of the proposed algorithm will necessarily
find the wrong match in every iteration (cf. figure 8). Through the smoothness term
of (11) this error is propagated to the neighbourhood of the erroneous vector.

The strategy that we want to take is to eliminate vectors that contribute a high energy
to (11). This is achieved through a threshold: we replace the attraction potential of the
data term of (10) by a robust potential - a cut-off potential that cuts off points located
beyond an adjustable threshold. These outliers are not considered in the regularization
step of the current iteration.

However, the result of the regularization step is propagated to the outliers: linear in-
terpolation yields the velocity field also at the location of the outliers, the positions of
which are updated, as are the positions of the inliers. The idea is that they may be torn
below the threshold in case they were wrongly detected outliers.

Particle was not detected
in the second frame

Fig. 8. Black circles denote particle position in the first frame, white circles denote positions in
second frame. Filled rectangles denote the current estimate. One particle has not been detected in
second frame. Minimization of (10) necessarily leads to the wrong match.
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In order to improve the performance in image regions with high velocity, we start
with a very high outlier threshold and then slowly increase this threshold: Thus, in the
first iterations, particles in fast moving regions will tend to be considered outliers, while
particles in slowly moving regions will tend to be considered inliers. The idea is that, in
the course of several iterations with an attenuating threshold, more and more particles
are considered inliers and the estimated velocity field in the high-velcotiy regions can
converge to the correct flow field.

3.3 Optimization

Note that the implicit data constraint defined by equation (5) is a non-convex func-
tion. Thus, retrieving a local minimum of (8) does not imply having found the global
optimum.

We use an auxiliary variable approach that represents a sound mathematical frame-
work and guarantees convergence [33]: In a two-stage iterative algorithm, each iteration
is composed of a local deformation followed by a global regularization. To justify this
approach we modify the energy E(u) of (8) by introducing an auxiliary variable uaux.
The two above steps can then be interpreted as alternate minimizations with respect to
each of the two variables, the variable of the initial energy u and the auxiliary variable
uaux.

A general formulation of the energy Eaux following [33] based on formula (8), with
the extra auxiliary variable uaux = uaux,1, uaux,2, ..., uaux,M , has the form:

Eaux(u, uaux) =
M∑

i=1

(1 − α

2
(
dS+u(S + uaux,i)

)2 +
α

2
(
dT (S + uaux,i)

)2
)

+ λ

∫

Ω

N∑

j=1

|∇uj(s)|2ds

(9)

The first two terms of equation (9) indicate the auxiliary variable’s function as an
intermediary between S + u and T . As a geometric interpretation, we can imagine the
iterative minimization of Eaux as a deformation of the current vector field followed by
a regularization. The successive minimization of Eaux is equal to subsequent minimiza-
tion of the following two energies EI and EII , each with respect to a different variable
- EI with respect to uaux, and EII with respect to u:
Local deformation:

EI(u, uaux) =
M∑

i=1

(1 − α

2
(
dS+u(S + uaux,i)

)2 +
α

2
(
dT (S + uaux,i)

)2
)

(10)

Global regularization:

EII(u, uaux) =
M∑

i=1

(1
2
(
dS+u(S + uaux,i)

)2
)

+ λ

∫

Ω

N∑

j=1

|∇uj(s)|2ds (11)

The two equations can be subsequently iterated in the given order until a stable condi-
tion is reached. Equations (10) and (11) demonstrate how both minimizations are linked
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Fig. 9. Delauney trianguation of the area covered by particles from an image plane; the line inter-
sections denote the extracted particle positions

by the term
∑M

i=1

(
dS+u(S+uaux,i)

)2
. The minimizing uaux of EI can be interpreted

as a trade-off between the closeness to S + u and the closeness to T . This gives a good
direction of displacement and avoids too large deformations of the auxiliary flow field
uaux. The grid generation is performed using a Delaunay triangulation [34] (cf. Fig. 9).
For details about grid generation and discretization of eqn. (11), for 2D and 3D image
pairs and image sequences, we refer to [35].

3.4 Experimental Evaluation

Data. The Visual Society of Japan (VSJ) has published standard images for particle
image velocimetry that are freely available on the internet [36, 37]. For 2D data, we
will refer to the test image classified as 301 in the VSJ library. It consists of 10 frames
taken in intervals of 0.005 sec; each frame consists of about 4,150 particles. It shows
the vertical portion of the impinging jet, with a maximum velocity of 10 pixels/ frame.

We will analyze our 3D approach using the test images classified as 331 in the VSJ
library (jet shear flow). The advantage of the VSJ images is that the underlying motion
fields, as well as the particle coordinates, are available so that the evaluation of differ-
ent approaches, as well as that of different parameter settings, is possible. By basing
our computations on this particle position data, we have to deal with very high particle
concentrations (approx. 4,150 particles to be tracked in the 2D case and 3,500 parti-
cles in the 3D case). We want to evaluate the performance of our algorithm in cases of
high particle concentrations, as up-to-date CCD cameras yield increasingly high resolu-
tions, and thus an up-to-date tracking system must be capable of managing high particle
concentrations.

Parameter Settings. The particle coordinates are normalized so that all particles lie be-
tween 0 and 1 in all spatial dimensions; the temporal dimension is numbered in integer
steps (t = 1, 2, ..., T ).

For all the test cases we use a smoothness parameter of λ = 0.1. The parameter α is
set to 0.8. In the first iteration, 75% of the particles are considered outliers and in every
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iteration 0.1% particles in addition are considered inliers. No additional particles are
considered inliers if the outlier threshold reaches 0.01.

The iteration is stopped if no further decrease in energy is perceived.

Error Measures. In this work, we want to concentrate on two error measures: yield
and reliability.

– Yield (EY ) is the measure of the number of correct vectors produced between two
images (n) divided by the total number of vectors known to exist between the two
images (v):

EY =
n

v
(12)

– Reliability (ER) is the measure of the number of correct vectors that were recon-
structed by the tracking method (n), divided by the total number of vectors deter-
mined by the tracking method (d):

ER =
n

d
(13)

Numerical Results and Discussion. The first test case is the computation of the veloc-
ity field between the frames 0 and 1 of the VSJ 301 image sequence. After 700 iterations
the solution presented in figure 10 (outlier ratio: 3%) is generated. The next step is the
additional exploitation of temporal smoothness information. Therefore we have to an-
alyze the whole VSJ 301 image sequence consisting of 10 frames. Figure 11 shows
the computed trajectories. Table 2 shows the parameters we use and the results that we
achieve. Furthermore, the results of the analysis of image pairs only are indicated. In
every frame, the computation based on the whole sequence is at least as good as the
image pair result. This had to be expected, as additional information is available in the
sequence case. The reason why only slight improvements are achieved has already been
addressed: We analyse a 2D projection of a 3D velocity field, therefore the smoothness
assumption does not necessarily hold at every point in the image.

This is why we will now turn to three-dimensional problems: First we want to com-
pute the 3D velocity field between the frames 0 and 1 of the VSJ 331 image sequence.
The solution that was generated after 750 iterations is presented in figure 12. In this test

Table 2. Error measures for VSJ Standard Image 301

α = 0.8, λsp = 0.1, λtmp = 10 α = 0.8, λ = 0.1
Frames Image Sequence Image Pairs

Yield Reliability Yield Reliability
00→01 97.72 96.41 96.34% 95.93%
01→02 97.62 96.61 96.83% 95.83%
02→03 97.69 96.45 97.05% 95.81%
03→04 97.64 96.64 96.90% 95.90%
04→05 97.32 96.63 97.05% 96.35%
05→06 97.64 96.70 97.11% 96.18%
06→07 97.28 96.10 92.99% 91.86%
07→08 97.28 96.30 93.11% 92.10%
08→09 96.33 95.24 93.94% 92.87%
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Fig. 10. Left: Estimated velocity field VSJ Image 301. Right: Two likely error constellations:
One particle has not been extracted in frame 2, the matching is performed with a close neighbour
of this vanished particle (top). Due to three-dimensionality of the velocity field, two particles
“cross” in the two-dimensional projection. The two-dimensional variational approach presumes
smoothness of the projection and chooses the wrong match (bottom).

Fig. 11. Computed trajectories from sequence VSJ 301

case, 3, 364 particles are visible in both images and 3, 372 matchings are computed.
These matches include all exact matches, and 8 particles that do not have a counterpart
in the second image but are erroneously matched to another particle. As expected, the
3D results are much better than the 2D results. Computations with volume coordinates
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of the VSJ 301 sequence show that we achieve matching rates very close to 100% in
these test cases, too.

Table 3 shows that even an increase in outlier probability does not deteriorate the re-
sults significantly: In these test cases, the indicated percentage of particles (first column)
has been randomly removed from both images to simulate problems in particle extrac-
tion and 3D reconstruction. The second column indicates the number of particles that
are visible in both frames, columns three and four show the two performance measures.

In order to assess the limits of our approach we want to consider only every second
image. The results indicated in table 3 show that the error measures are still very good.
When considering only every third image, however, the approach is no longer able to
determine a valid velocity field. In fact, both yield and reliability drop to 0% (i.e. not
a single velocity vector is recovered correctly). The algorithm does not find a starting
point as the offsets at every position in the image are so high that no particle is able to
find its counterpart in the first iteration and thus the algorithm converges to the wrong
minimum. This drawback had to be expected as we are minimizing a highly non-convex
functional (cf. eqn. (10)).

4 Higher Order Regularization and Natural Discretization

The experimental evaluation of sec. 2.2 suggests the use of higher-order regularization.
This type of regularization is necessary to accurately recover important flow structures
like vortices, for example, and to incorporate physically plausible constraints, like van-
ishing divergence of the flow.

Table 3. Error measures for VSJ Standard Image 331

00 → 01 00 → 02
Removed Par-
ticles

Possible
Matches

Yield Reliability Possible
Matches

Yield Reliability

0% 3, 364 100.00% 99.76% 3, 192 99.97% 99.47%
5% 3, 037 100.00% 99.84% 2, 881 99.86% 99.45%
10% 2, 731 100.00% 99.60% 2, 586 99.38% 99.34%
15% 2, 440 100.00% 99.59% 2, 307 98.22% 99.60%
20% 2, 170 100.00% 99.40% 2, 053 98.30% 99.56%
25% 1, 885 100.00% 99.74% 1, 809 44.83% 44.81%
30% 1, 649 100.00% 99.40% 1, 557 38.79% 39.35%
35% 1, 403 99.93% 99.64% 1, 339 31.14% 31.17%
40% 1, 211 100.00% 99.26% 1, 131 32.98% 33.01%

4.1 Orthogonal Decomposition

We represent vector fields directly in terms of their irrotational and solenoidal compo-
nents. These components are defined by the first-order variations of velocity potentials
ψ and stream functions φ, respectively [38]. The representation of the 2D vector field
u ∈ H1(Ω)2 in terms of ψ, φ reads:

u = ∇ψ + ∇⊥φ ,

u∂Ω = ∂nψ ,
(14)
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Fig. 12. Estimated 3D velocity field for sequence VSJ 331

where φ∂Ω = 0 is unique up to a constant of ψ. Here, Ω denotes the image section
(grid) and n the corresponding outer normal vector. Let

u = v + w, v = ∇ψ, w = ∇⊥φ, φ|∂Ω = 0 (15)

according to (14). Because of

curl v = 0, div w = 0, (16)

we have:

〈v, w〉 =
∫

Ω

∇ψ · ∇⊥φdx = −
∫

Ω

(curl ∇ψ)φdx +
∫

∂Ω

∂nψφdl = 0, (17)

which shows that the decomposition (14) is orthogonal. Discretizing such vector fields
with standard finite differences or finite elements yields approximate decompositions
only, and may lead to numerical instabilities in applications. This is why we use a
mimetic finite differencing scheme that provides an exact orthogonal decomposition of
the finite-dimensional space of vector fields [39, 40]. Furthermore, the decomposition
allows to estimate φ, ψ directly, using variational approaches and subspace correction
methods. Alternatively, we may first estimate u and then compute φ, ψ in a subsequent
step by solving the Neumann and Dirichlet problems:

�ψ = div u, ∂nψ = u∂Ω

−�φ = curlu, φ∂Ω = 0
(18)

For a more detailed exposition, we refer to [41].

4.2 Regularization and Optimization Problems

We use the conventional data term for optical flow estimation, along with regularizers
L(u) to be specified below

min
u∈H1(Ω)2

F (u), F (u) := (∇f�u +
∂f

∂t
)2 + L(u) (19)
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Fig. 13. Top Left: The first image I1with the restored solenoidal flow. Top Right: The divergence
field of the flow which is less than 3e − 12. Middle Left: The potential field ψl(Ω) related to
the laminar flow. Middle Right: The potential field φ(Ω). Bottom Left: The first component of
flow: the laminar flow ulam. Bottom Right: The second component of flow related to potential
φ(Ω). The comparison with standard regularization is depicted in figure 14.

We wish to apply the following second-order regularizer

L(u) =
∫

Ω

λ1|∇ div u|2 + λ2|∇ curlu|2dx (20)

where λ1 and λ2 are two positive constants. This term measures the variation of the
basic flow components divergence and curl, but does not penalize the components itself.
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Fig. 14. Top: The restored solenoidal flow u(Ω). Bottom: The restored flow uhs(Ω) using the
Horn-Schunck regularization (sec. 2). This results clearly show that vortex structures are bet-
ter recovered by our approach. Furthermore, the magnitude of the divergence is below 10−11

throughout the image plane.

However, both standard finite differences or finite elements discretization lead to finite-
dimensional representations which do not satisfy (14), (18). As a result, penalizing one
component may affect the other component too. Therefore, we adopt the framework
described in [41].

4.3 Estimation of Solenoidal Flows

An important special case, particularly in applications of experimental fluid mechanics,
concerns the estimation of solenoidal (divergence-free) flows. In this case the decom-
position (14) reduces to

u = ∇ψl + ∇⊥φ := ul + ∇⊥φ (21)
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where the laminar flow ul can be computed through the full flow u by solving:

�φl = 0, ∂nψl = u∂Ω (22)

and ul = ∇ψl. The laminar flow ul is both divergence- and curl-free. In order for (22)
to be solvable, we require the compatibility condition

∫
∂Ω

u∂Ωdl = 0 (cf., e.g., [42]).
Using the mimetic finite difference method [41], this condition is satisfied naturally. If
we fix �φl = 0, then

∫
∂Ω

u∂Ωdl = 0.

4.4 Numerical Example

Figure 13 shows the result of estimating the solenoidal flow for a real image sequence.
The comparison with first-order regularization (Horn-Schunck approach, sec. 2) in
figure 14 cleary reveals the superiority of our approach regarding the reconstruction
of vortex structures. Furthermore, the (in this case) physically plausible constraint of
vanishing divergence is satisfied quite accurately.

For further experimental evaluations we refer to [41].

5 Conclusion and Future Works

We presented a range of variational approaches to the fluid flow estimation problem.
Traditional variational approaches to optical flow estimation apply to PIV scenarios,
whereas a novel variational framework has been introduced to solve the PTV prob-
lem. All these approaches favourably compare with established PIV and PTV image
processing techniques based on cross-correlation and sophisticated post-processing.

Finally, we sketched a variational framework exploiting higher-order regularization,
as well as motion representation and estimation in terms of velocity potentials and
stream functions. The integration of these variational schemes in our future work will
provide the basis for qualitative motion and time series analysis of complex motion
patterns in fluids.
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the priority programme “Bildgebende Messverfahren in der Strömungsmechanik”(SPP-
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Motion Based Estimation and Representation of 3D
Surfaces and Boundaries

Klas Nordberg and Fredrik Vikstén

Computer Vision Laboratory
Department of Electrical Engineering
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Abstract. This paper presents a novel representation for 3D shapes in terms of
planar surface patches and their boundaries. The representation is based on a
tensor formalism similar to the usual orientation tensor but extends this concept
by using projective spaces and a fourth order tensor, even though the practical
computations can be made in normal matrix algebra. This paper also discusses
the possibility of estimating the proposed representation from motion field which
are generated by a calibrated camera moving in the scene. One method based on
3D spatio-temporal orientation tensors is presented and results from this method
are included.

1 Introduction

Motion analysis can be divided into two relatively separate problem areas, each area
having its own set of models and methods. The first one is that of estimating a motion
vector at a particular point in an image which represents a certain time point of an
image sequence. The standard approach is based on the brightness constancy constraint
equation (BCCE) (or optic flow equation),

v1
∂g

∂y1
+ v2

∂g

∂y2
+ Δt

∂g

∂t
= 0 (1)

where g is the image intensity as a function of the two image coordinates

y =
(

y1
y2

)
(2)

and time t, Δt is the temporal distance between two frames in the image sequence, and

v =
(

v1
v2

)
(3)

is the motion vector which we want to estimate. The problem of estimating v from
image data can be solved in a variety of ways by using a number of different approaches,
see for example [2]. These methods typically produce an image which at each point
contains an estimate of the motion vector v, in some cases complemented by a measure
certainty or confidence in the estimate.
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We can also rewrite Equation (1) as

(∇g)T v = 0 (4)

where

∇g =

⎛

⎜
⎜⎜
⎜
⎜
⎜
⎝

∂g

∂y1

∂g

∂y2

∂g

∂t

⎞

⎟
⎟⎟
⎟
⎟
⎟
⎠

v =

⎛

⎝
v1
v2
Δt

⎞

⎠ (5)

and instead see the projective element v as the interesting variable which should be
estimated. One way to estimate this is done by forming the 3× 3 symmetric matrix (the
so-called structure tensor) T according to

T(y, t) = W ∗ (∇g ∇T g) (6)

where the convolution is over the entire spatio-temporal data of the image sequence
and W is a localized weighting function of both space and time. If the support of W is
sufficiently small to allow the assumption that v is constant within the region, it follows
from Equation (4) that

T v = 0 (7)

i.e., v is a null vector of T. Another interpretation of this relation is that T represents
the local 3D orientation of the spatio-temporal image data at point (y, t), and from this
follows that the estimation of T can be computed in other ways than is described above,
see [2] and [3].

Regardless of whether an explicit or implicit representation of the local motion has
been estimated, the result can normally be regarded as a motion descriptor, e.g. v or T,
which is a function of the image position y. In the following, this function is referred
to as the motion field, which of course also is a function of the time t.

The second area of motion analysis uses the motion field defined above and tries to
analyze the field, e.g., determine how the motion field varies with y and possibly also
with t. Again, this analysis can be done in different ways and the methods used are
normally based on both the goal of the analysis and the underlying assumption about
what has caused the image data to vary over time, e.g., is it the objects in the scene
which are moving, is it the camera that moves, or perhaps both.

In this paper we will consider the problem of estimating the features and shapes of
objects in a static scene based on the motion field caused by moving a calibrated camera
according to a known motion model. To simplify the presentation this model contains
only translation of the scene relative to the camera with a known motion vector

w =

⎛

⎝
w1
w2
w3

⎞

⎠ (8)

In the following, we will assume that all 3D coordinates are defined relative to a camera-
centric reference system with the third dimension pointing in the view direction of the
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camera. The resulting motion field can then be analyzed to obtain various forms of
information about the 3D structure of the scene. Assuming a standard pin-hole camera
model, which maps the coordinates of a point

x =

⎛

⎝
x1
x2
x3

⎞

⎠ (9)

in the scene, to a point y in the image according to

y =
(

y1
y2

)
=

f

x3

(
x1
x2

)
(10)

where f is the focal distance of the camera. The motion of the camera causes the pro-
jection of x to y to change over time in accordance to

⎛

⎜
⎝

dy1

dt
dy2

dt

⎞

⎟
⎠ =

f

x2
3

⎛

⎜
⎝

dx1

dt
x3 − x1

dx3

dt
dx2

dt
x3 − x2

dx3

dt

⎞

⎟
⎠ (11)

We can now make the following identifications

(
v1
v2

)
=

⎛

⎜
⎝

dy1

dt
dy2

dt

⎞

⎟
⎠

⎛

⎝
w1
w2
w3

⎞

⎠ =

⎛

⎜
⎜
⎜
⎜⎜
⎝

dx1

dt
dx2

dt
dx3

dt

⎞

⎟
⎟
⎟
⎟⎟
⎠

(12)

The insertion of these two expressions together with Equation (10) into Equation (11)
gives us

v =
(

v1
v2

)
=

1
x3

(
f w1 − y1 w3

f w2 − y2 w3

)

=
1
x3

u (13)

Notice that both v and u are functions of the image position y.
One of the most common approaches of motion analysis for shape description is to

simply estimate the corresponding depth x3 at each image point y. Given the above
relations between the point in the scene x, the image coordinate y and the local image
velocity v, x3 can be determined in different ways. For example, from Equation (13) it
follows directly that

x3 =
u(y)T u(y)
u(y)T v(y)

(14)

which, however, does not take into account that v may not be the correct velocity due to
the aperture problem, nor does it manage the situation which occurs when the denom-
inator of Equation (14) comes close to zero. Whatever approach is used, the result is a
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function x3(y) which we may refer to as the depth field corresponding to the motion
field. By rewriting Equation (10) as

x =

⎛

⎝
x1
x2
x3

⎞

⎠ =
x3

f

⎛

⎝
y1
y2
f

⎞

⎠ =
x3

f
y (15)

the depth field can be transformed into a field of points x given as a function of the
image position y according to

x =
x3(y)

f
y (16)

This type of field can be visualized as a “cloud” of points in the 3D space which, how-
ever, does not contain any relations or interpretations of what shape the points represent.

One way to introduce a shape interpretation which also has consequences for how
we analyze the underlying motion field is to assume that the points in the scene all lie on
planar surfaces and that a set of such surfaces are observed by the translating camera.
This means that to each planar surface there is a corresponding segment in the motion
field in which the field varies according to the parameters of the plane. Each planar
surface1 can be described by a vector

l =

⎛

⎝
l1
l2
l3

⎞

⎠ (17)

such that a point x, Equation (9), lies on the surface if and only if

l1 x1 + l2 x2 + l3 x3 = ‖l‖2 (18)

Notice that l is a normal vector to the plane and that ‖l‖ is the normal distance from the
origin to the plane. If we insert Equation (10) to produce

f ‖l‖2 = x3 (y1 l1 + y2 l2 + f l3) = x3 yT l (19)

we can solve for x3 and insert into Equation (13) to get the following relation

v =
yT l

f ‖l‖2 u (20)

Notice that together with Equation (13) this relation implies that the motion field is a
second order function of the image coordinates (y1, y2).

Given a segment S of the motion field which corresponds to a particular planar sur-
face, the vector l can be estimated by substituting m for l, where

m =
l

f‖l‖2 (21)

1 This representation does not include planes which pass through the origin since they would
all be represented by the zero vector and Equation (18) is true for any x if l = 0. In practice
such planes will be of little interest for this application, and in Section 2 l will be replaced by
a homogeneous representation lH which solves this ambiguity.
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and minimize

ε =
∑

y∈S

∥
∥
∥
∥v(y) − u(y) yT l

f‖l‖2

∥
∥
∥
∥

2

=

=
∑

y∈S

∥
∥v(y) − u(y) yT m

∥
∥2

(22)

over m. This m is found by solving a system of linear equations:
⎛

⎝
∑

y∈S

y uT u yT

⎞

⎠ m =
∑

y∈S

y uT u (23)

and by inserting it into the inverse of Equation (21):

l =
m

f‖m‖2 (24)

the corresponding l is produced. A similar method is described in [3] which assumes
that the motion field of each segment is a second order function of y, but instead of
estimating l given a known camera motion it estimates the parameters of the second
order mapping from y to v which can be done without any assumption about the cause
of the motion.

A major difficulty with this approach is of course that normally we do not know
the segments of the motion field. There are different approaches for finding a set of
segments, each having a motion field according to Equation (20) for some l, see [4].
The most common methods are region based, using either the split-and-merge approach
or the region growing approach. Both make use of a computation of the residual error
ε, Equation (22), corresponding to the estimated parameter l. In the first case, the entire
motion field constitutes one single initial segment. Each segment is split into smaller
segments if its residual error is not small enough and this process is repeated until no
more segments split. Then, neighboring segments are merged if their parameters l are
sufficiently close, a process which also continues until no more merging occurs. In the
second case, a segment is growing from a seed point by adding new points, normally
at its boundary, to the segments if they decrease the residual error. There exist also
combinations of the two approaches.

Region based segmentation is normally computationally demanding, which can be
explained with the fact that the computations often have to be iterated a large number
of times and that they typically include processing of the segments which cannot be
implemented as regular operations on image data. Another problem is the fact that the
resulting segments are sensitive to noise and to small changes in the image data. In
particular, a motion field which has a slow variation in l will be segmented into a set of
homogenous segments, but the boundaries of these segments will to a significant extent
depend on the implementation of the chosen method and may change dramatically even
for small changes in the image data.

An alternative approach to region based segmentation is finding the boundary points
of each segment rather than all the points which constitute the segment. For segmenta-
tion of gray valued or color images, this may be a feasible approach with the additional
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assumption that the gray-value or color is relatively constant within each segment and
that it changes relatively abrupt between each segment. However, in the case of mo-
tion fields, neither of the two assumptions may be true. The field itself may vary within
a segment, even if the parameters, e.g. l, is constant, and the rate of change can be
small or large depending on the parameters. The same is true for the transition between
two neighboring segments, it is large if the change in l is large and vice versa. Con-
sequently, boundary based approaches to segmentation of motion fields normally have
to be restricted to the cases when we know that the motion field is relatively constant
within the field and that the field itself changes relatively much between neighboring
segments.

1.1 Thesis of the Paper

In this paper, we will discuss the possibility of describing the motion field without
making an explicit segmentation of the field. However, this description is still based
on the assumption that the motion field constitutes a set of segments, each having a
homogenous field according to Equation (20). The description to be presented has the
following characteristic properties:

– It is a local feature, i.e., it describes the motion field in a local region around the
point in the image.

– It uses an explicit representation of the motion field v in terms of the geometric
shape of planar surfaces in the scene.

– It can both represent the case of a single homogenous field, according to Equa-
tion (20), and the boundary between two such field. Also junction points of three
different field can be detected.

– Assuming planar surfaces, the boundary points normally correspond to edges be-
tween planes, and the junction points correspond to corners.

– At the boundary and junction points, the descriptor represents where in the local
region each field has its center of gravity and the corresponding vector l of the
field.

– It uses tensors as the primary tool for constructing the representation.

2 Points and Planes

In this section we will formalize some of the results presented in the previous section.
Let x represent a 3D point and let l represent a 3D plane such that x lies in the plane if
and only if Equation (18) is satisfied. This relation can be rewritten in a more compact
form if we introduce a homogenous representation of x and l according to

xH =
(

1
x

)
lH =

(
−‖l‖

l̂

)

(25)

where l̂ is the normal vector corresponding to l = ‖l‖ l̂. The condition for x lying in
the plane represented by l can then be written

0 = xT l̂ ‖l‖ − ‖l‖2 = ‖l‖(xT l̂ − ‖l‖) = ‖l‖ xT
H lH (26)
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This relation assumes that ‖l‖ �= 0, i.e., that the plane does not pass through the origin,
which means that we can replace Equation (18) with

xT
H lH = 0 (27)

which then is true if and only if x lies in the plane. However, if the plane passes through
the origin, i.e., ‖l‖ = 0, lH is still a well-defined entity except for its sign, given that
we chose l̂ as a normal of the plane. Furthermore, in this case and regardless of which
sign we choose for lH , Equation (27) is true if and only if x lies in the plane. It should
be noticed, though, that the possibility of representing also planes which pass through
the origin will not be of any practical use to us, and we will in the following assume
that ‖l‖ �= 0.

A natural consequence of the last result is that we will use xH and lH for the repre-
sentation of a point and a line, respectively. Furthermore, if we replace either of xH or
lH in Equation (27) by the same vector multiplied by an arbitrary non-zero scalar, it is
still the case that the relation is true if and only if x lies in the plane. Consequently, xH

and lH can be considered as elements of a projective space. In the following, we will use
this fact to derive some useful results. A more thorough treatment of the mathematical
foundations for points and other geometrical entities is found in [5] and [6].

3 A Representation of Points

In this section we will develop a representation of the points in the scene. The result-
ing representation follows the results presented in [7], but here we also show that the
representation can be estimated directly from image data.

Let us consider a specific image point y for which we have estimated a correspond-
ing motion vector v corresponding to the motion w of the camera. To y there is a
corresponding 3D point x in the scene which we assume to lie in a planar surface. The
point is represented by xH and the surface is represented by lH , both being elements
of a projective space. Since x is observed through a pin-hole camera and is defined in a
coordinate system centered at the camera’s focal point, we can assume that x �= 0. As
was mentioned above, we also assume that the plane does not pass trough the origin,
i.e., l �= 0.

Related to the point y we can define a 4 × 3 matrix K as

K =

(
0 u yT

−f Δt 0

)

(28)

where u is a 2D vector defined in Equation (13) which carries information about w and
y, y is the 3D vector defined in Equation (15) which represents the image coordinate
y, f is the focal distance of the camera, and Δt is the temporal distance between two
images in the sequence from which the motion field is estimated. Notice that K can
be fully determined from local measurements on image data and parameters which are
known.

We will now define the symmetric 4 × 4 matrix

S20 = K T KT (29)
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Notice that since both T and K depend on y and t, so does S20. It then follows from
the previous results that S20 can have at most rank one, and that xH is an eigenvector
of S20 with non-zero eigenvalue or, more precisely,

S20 = ξ xH xT
H (30)

for ξ ≥ 0.
To prove this property of S20, we need first to construct the 4D vector xH as

xH =
(

−‖x‖2

x

)
(31)

i.e., xH is the homogenous representation of the plane which passes through x with x
as normal vector. We also need two 4D vectors

p0 =
(

0
p

)
q0 =

(
0
q

)
(32)

where p, q and x form an orthogonal set of 3D vectors, i.e., neither of p or q is the
zero vector. Notice that xH , xH , p0 and q0 form an orthogonal set of 4D vectors.

Given these four vectors, we get

KT xH =

(
0 u yT

−f Δt 0

) (
−‖x‖2

x

)

=

=

(
u yT x

f ‖x‖2 Δt

)

= f ‖x‖2

(
v

Δt

) (33)

where the last identity follows from Equations (13) and (15). From Equation (5) follows
then

KT xH = f ‖x‖2 v (34)

and, using Equation (7), we get

S20 xH = K T KT xH = f ‖x‖2 K T v = 0 (35)

i.e., xH is an eigenvector of zero eigenvalue relative to S20. This is also the case for p0,
since

KT p0 =

(
0 u yT

−f Δt 0

) (
0

p

)

=

(
u yT p

0

)

=

=
f

x3

(
u xT p

0

)

=
f

x3

(
0

0

)

= 0,

(36)

and for q0 using a similar derivation. We have thus proven that xH , p0 and q0 are all
eigenvectors of zero eigenvalue relative to S20, i.e., S20 can have at most rank one.



154 K. Nordberg and F. Vikstén

Since the four vectors form an orthogonal set, it then follows that also xH is an eigen-
vector of S20 with an eigenvalue ξ still to be determined. Hence, we have proven that
Equation (30) is true but ξ ≥ 0 has still to be established.

To find this eigenvalue, consider the expression

xT
HS20 xH = ξ ‖xH‖4 (37)

Assuming that T is estimated according to Equation (6), this can be rewritten

ξ ‖xH‖4 = xT
HK T KT xH =

= xT
HK [

∑

y

W (y)∇g ∇T g] KT xH =

=
∑

y

W |∇T g KT xH |2
(38)

Under the assumption that W is not negative, this means that ξ cannot be zero unless
∇T g KT xH vanishes for all y within the region which we use to compute T for a
certain image point. Consequently, we have to look at

∇T g KT xH = ∇T g

(
0 u yT

−f Δt 0

) (
1

x

)

=

= ∇T g

(
u yT x

−f Δt

)

= ∇T g

(
f v ‖x‖2

−f Δt

) (39)

where again we have made use of Equations (13) and (15) to obtain the last identity.
Now, we can insert the definition of ∇g, Equation (5):

∇T g KT xH = f

(
∂g

∂y1

∂g

∂y2

∂g

∂t

)
⎛

⎜⎜
⎝

v1 ‖x‖2

v2 ‖x‖2

−Δt

⎞

⎟⎟
⎠ =

= f

(
v1

∂g

∂y1
‖x‖2 + v2

∂g

∂y2
‖x‖2 − Δt

∂g

∂t

)
=

= −f Δt
∂g

∂t
(1 + ‖x‖2)

(40)

where the last identity follows from Equation (1). We can write this in a more compact
form as

∇T g KT xH = −f Δt
∂g

∂t
‖xH‖2 (41)

By combining this with Equation (38), we get

ξ = (f Δt)2
∑

y

W

∣∣
∣
∣
∂g

∂t

∣∣
∣
∣

2

(42)
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The conclusion that we can draw from this derivation is that ξ does not vanish by de-
fault. It is always non-negative and furthermore positive if the temporal derivatives of
the image data is not zero for all points in the region used to compute T. Clearly, this
situation occurs if and only if the local region is constant or if the true image velocity v
is parallel to all local structures. In these cases, no motion can be estimated at the local
level, and the result is also that S20 vanishes.

Before continuing, let us summarize the results of this section. We assume that at
image point y, a local representation of the image velocity has been estimated in terms
of T, Equation (6). Given the focal distance f of the camera and the motion w of
the camera, we can also compute the matrix K, Equation (28), associated with point
y. Given T and K, a 4 × 4 symmetric matrix S20 can then be computed according
to Equation (29). It then follows that S20 can be written as Equation (30) where ξ is
non-zero unless no local motion can be estimated.

4 A Representation of Planes

The matrix S20 described in the previous section can be described as a “point descrip-
tor” even though it is computed from descriptors which are estimated from neighbor-
hood operations, i.e., T. Next, we will estimate a corresponding descriptor for the rep-
resentation of the planar surfaces which the points are assumed to lie in. Clearly, this
information cannot be derived from a single point and in order to obtain it we need to
integrate information from several points in a region.

Let us begin by revisiting Equation (18). This relation can be interpreted as: given
a point x which we represent by xH , any vector which is perpendicular to xH can
be seen as a representation of a plane which passes through x. A consequence of this
observation is that the null space of S20, Equation (30), consists of the homogeneous
representations of all planes which passes through the point xH .

Next, we compute a weighted average of S20 in a local region around a point y:

S′
20 =

∑

y

W (y) S20(y) (43)

where W ≥ 0. The main result of the last section is that we can rewrite this as

S′
20 =

∑

y

W (y) ξ(y) xH(y) xH(y)T (44)

which implies that the null space of S′
20 contains the homogeneous representations lH

of planes that pass trough all of the points xH in the region.
Depending on the features of the local image data around the point y, the resulting

matrix S′
20 can therefore have the following characteristics:

– If the region only contains one single point, then S′
20 has rank one, according to

Equation (30).
– If the region contains points on a single line, then S′

20 has rank two. The null space
of S20 contains all planes lH which contain the line.
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– If the region contains points which all lie on a single plane, then S′
20 has rank three.

The null space is one-dimensional and is spanned by lH , the projective element
which represents the plane.

– If the region contains points which do not all lie on a plane, then S′
20 has rank four

(full rank). The null space is trivial and no information about the local 3D structure
in terms of planes can be inferred.

In the following, we will focus on the third case. By analyzing the rank of S′
20 by

computing its eigenvalues or characteristic polynomial, the image points y which have
a corresponding S′

20 of rank three can be filtered out, or a measure of confidence on
S′

20 having rank three can be estimated. In points of high confidence for rank three, we
want to estimate the corresponding plane, i.e., the corresponding vector lH . This can
be done by finding an eigenvector S′

20 of zero eigenvalue given that the eigensystem of
S′

20 has been computed. Here we will instead use an indirect method based on an oper-
ation called rank complement. The basic idea is to form a new symmetric matrix where
the range and null space are interchanged relative to S′

20. For the case of symmetric
matrices, the two matrices have a common set of eigenvectors but non-zero eigenvalues
are mapped to zero and zero eigenvalues are mapped to non-zero values.

In [8], it is shown that for each size of the matrix and for each rank of that matrix,
there is a specific polynomial function which maps the matrix to another matrix such
that they are each others rank complement. For all S′

20 labelled as “rank three”, the
corresponding rank complement polynomial is applied to produce

S02 = R3,1(S′
20) = γ lH(lH)T , (45)

where Rm,n is the rank complement from rank m to rank n. The symmetric 4×4 matrix
S02 then carries a representation of the planar surface which all points in the region
lie in.

5 A Representation of Points and Planes

At each point in the image we can now estimate the matrix S20, which describes the
position of the corresponding point in the scene, and the matrix S02 which represents the
plane that the point lies in. What we will do next is to combine these two representations
into a single representation of both position and plane parameters.

Furthermore, both descriptors can be seen as elements of projective spaces since
multiplication by non-zero scalars do not change their information content, at least in
relation to other descriptors scaled in the same way.

Let S20(y) and S02(y) be the descriptors of scene position x and plane parameters l
which are estimated at image position y. To begin with, both descriptors are symmetric
4 × 4 matrices and, consequently, we can see them as elements of a 10-dimensional
vector space.

As such, we can take the outer product between them to construct a 10 × 10 matrix:

S22 = S20 ST
02 (46)
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At this point it is not obvious why this construction is of any use. If S20 and S02 pre-
viously where available as separate entities, their combination into S22 is such that we
can still extract them by means of operations which perhaps are straightforward but still
unnecessary.

To see the potential of S22, let us integrate it over a local region around a point y in
the image together with a weighting function A:

S′
22 =

∑

y

A(y) S22(y) =

=
∑

y

A(y) S20(y) ST
02(y)

(47)

We will then make the following assumption:

– The local region contains N planar surfaces, each being represented by the ho-
mogenous vector lHk where k = 1, . . . , N .

A consequence of this assumption is that all points y which belong to the same
segment of the region, i.e., belong to the same planar surface, will have the same value
for S02, with the exception that its norm may change. Consequently, the summation over
y in Equation (47) can be replaced with a summation over the N segments, according
to

S′
22 =

N∑

k=1

S′
20,k ST

02,k (48)

In this expression
S′

20,k =
∑

y∈Γk

A′(y) S20(y) (49)

where Γk is the set of image points belonging to segment k and A′ is the weighting
function modified with the variation in the norm of S02, and S02,k is the 10-dimensional
vector version of the 4 × 4 matrix

lHk (lHk )T (50)

The expression for S′
22 in Equation (48) is interesting since it implies that each planar

segment found in the region contributes with a term S′
20,k ST

02,k which, in turn, suggests
that the rank of S′

22 is related to the number of segments. In [9] this is shown to indeed
be the case, at least if the number of segments is three or less. It is also shown that
for the case of one, two and three segments, it is possible to analyze S′

22 in order to
obtain the corresponding values for S′

20,k and S02,k. The method is based on making
a Singular Value Decomposition (SVD) of the 10 × 10 matrix S′

22, but since S02,k are
not orthogonal for different segments we need to apply specific operations in order to
extract corresponding pairs of S′

20,k and S02,k. For each such pair, S02,k is given as in
Equation (50) and from Equations (30) and (49) it follows that S′

20,k can be written

S′
20,k = a

(
1 xT

c,k

xc,k Ck + xc,kxT
c,k

)

(51)
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where xc,k is the weighted mean of all 3D points corresponding to the image points of
segment k. The weighting is made with a combination of the function A and the norm
of S02. The 3 × 3 matrix C is the corresponding weighted covariance, which describes
how the 3D points are distributed in space around the mean.

Let us summarize the discussion to this point before looking at some experiments.
At each point y in the image, we can compute a 10 × 10 matrix S′

22 according to
Equation (47), a weighted mean of the outer product between S20 and S02. Both of
these are 10-dimensional vectors which are formed by reshaping the two symmetric
4×4 matrices S20 and S02 given by Equations (29) and (45), respectively. This implies
that the matrix S20 is formed by just multiplying the spatio-temporal orientation tensor
T at point y with a 4 × 3 matrix K which both contains information about the position
in the image and the camera motion. Furthermore, the matrix S02 is formed by taking
the proper rank complement of a local average of S20.

Once S′
22 has been computed, it can be analyzed in terms of rank. If the number of

planar segments in the region which has been used for computing S′
22 is three or less, the

rank of this matrix is the same as the number of segments, and there is a procedure for
extracting, for each segment, both the corresponding vector lH and the local statistics
of the 3D positions of all points on the planar segment up to second order.

It should be noted that the descriptor S′
22 holds 10 · 10 = 100 elements, which

may seem a bit unmanageable. However, each such matrix has to be computed from a
relatively large region in the image, since it uses three region based operations in suc-
cession, the computation of T, local average of S20, and local average of S22. Conse-
quently, it will contain information which can be subsampled in both image coordinates
with a factor which is in the order of 10 in each direction, and the resulting field of
matrices S′

22 therefore corresponds to a reasonable data volume.

6 Estimation and Results

In this section we will describe a practical implementation for estimation of the tensor
S′

22, based on the previous presentation, and illustrate some of results obtained by ap-
plying the method on synthetic data. A synthetic image sequence has been chosen in
order to be able to demonstrate the performance of the method.

Starting from a sequence of images, illustrated in Figure 1, where a camera of known
focal length is moving with a known velocity w relative to a known object, we estimate
a structure tensor T using the method described in [3]. The choice of estimation method
for T does not seem to be important, in particular if the structure tensor field also is av-
eraged in small spatio-temporal neighborhoods before being used. A certainty measure
that regards structure tensors of small norm as noise is then computed. This certainty
measure is then used throughout the procedure and is the reason for all the missing data
in the following figures.

At each image point y we can then compute the corresponding matrices K and S20
according to Equations (28) and (29). Since S20 is a matrix of at most rank one, Equa-
tion (30), it can easily be analyzed to find the corresponding 3D point x. However, the
result of this operation is to a significant degree dependent on the accuracy related to
the camera motion w and the correctness of the pin-hole model of the camera. If any
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of these assumptions are wrong the geometrical distribution of points in the scene will
become distorted. Figure 2 shows the 3D points estimated from S20 which all seem to
lie on the correct surfaces.

Before further processing, the matrix S20 will be modified by the process of channel
smoothing. This operation, which is applied to the vector x extracted from S20, both
performs a local averaging of the position to reduce any noise introduced by the mea-
surements, and removes outliers. The channel smoothing operation is presented in more
detail in [1, 10].

Given the value of x regularized by channel smoothing, we construct the tensor S′
20

as
S′

20 =
∑

y

W (y) xH(y) xT
H(y) (52)

where W (y) is the weighting function described in Equation (43) and xH(y) is the
homogenous representation of x at image point y. The tensor S′

20 will then have the
structure described in Equation (51) from which a center of gravity xc and covariance
C around xc can be extracted. Notice that the rank of C is always one less than that of
S′

20.
The underlying assumption is that the 3D points in the local region used to construct

S′
20 are lying on a plane, which implies that the corresponding C has rank two (or S′

20
has rank three). In order to analyze the rank of C, we can compute its SVD, which gives
the singular values σ1 ≥ σ2 ≥ σ3. From these, we then compute the following three
parameters

c1 =
9 d − 4 q t + t3

3 d − 3 q t + t3
c2 =

−9 d + q t

3 d − 3 q t + t3

c3 =
3 d

3 d − 3 q t + t3

50 100 150 200 250
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100

150

200

250

Fig. 1. Mid-image of generated sequence
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Fig. 2. Depth from point estimate of S20

where

t = σ1 + σ2 + σ3 d = σ1 σ2 σ3

q = σ1 σ2 + σ2 σ3 + σ3 σ1

Notice that c1 + c2 + c3 = 1 and that

– c1 = 1, c2 = 0, c3 = 0 if σ2 = σ3 = 0.
– c1 = 0, c2 = 1, c3 = 0 if σ1 = σ2 and σ3 = 0.
– c1 = 0, c2 = 0, c3 = 1 if σ1 = σ2 = σ3.

which means that ck can be used as a measure of confidence of rank k. Figure 3
illustrates the rank of S′

20, where green points indicate that c2 is the largest, i.e., rank
three, and blue points indicate that c3 is the largest, i.e., rank four. The latter case hap-
pens in regions close to edges between different planar segments, as indicated in the
figure.

A further test of the correctness of the estimated data in S′
20 is to consider the position

and orientation information which it contains relative to the estimated depth map or to
the ground truth. In image points for which S′

20 has rank three, i.e., which corresponds
to a single planar segment, the null space of S′

20 is spanned by lH which describes a
3D plane both in terms of position and orientation. For image points where the rank of
S′

20 is three we can thus obtain both a position xc and a surface normal. Figure 4(a)
illustrates this information for some points in the image, i.e., for each such image point,
a normal given by lH has been drawn from the corresponding center of gravity. This
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Fig. 3. Rank of the S′
20 tensor. Green is rank three and blue is rank four.

image also shows the set of points x which are plotted in Figure 2. The normals can also
be drawn in the synthetic 3D model which is used for generating the image sequence,
as seen in Figure 4(b).

The next step is then to compute the rank complement, going from rank three
to rank one, which gives us S02 for this point in the image. This means that we have
both a S20 and S02 for each image point, from which the tensor S′

22 can be computed
according to Equation (47), but with the additional weighting of certainty for rank three
of S′

20:

S′
22 =

∑

y

A(y) c2(y) S20(y) ST
02(y) (53)

(a) Estimated depth data (b) Synthetic data

Fig. 4. Selected normals to xH set
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Fig. 5. Rank of S22 tensor

The S′
22 tensor, which can be estimated at an arbitrary image point according to the

above procedure, can now be analyzed in terms of how many planar surfaces it contains
and also to extract their positions and orientations. For up to three surfaces, the rank of
the matrix S′

22 is the same as the number of surfaces, which implies that we want some
measure of confidence for each of the three cases of rank. This can of course be done by
first computing an SVD of S′

22, giving the three largest singular values σ1 ≥ σ2 ≥ σ3,
which then are plugged into the same computations as above for the three measures of
rank confidence ck. Figure 5 illustrates the result of this operation, where red indicates
rank one, green indicates rank two, and blue indicates rank three. As seen, local regions
which only contain a single planar surface are red, close to edges between two surfaces
we get green points, and at the corner where three surfaces meet we get blue points.

Finally, at points close to edges or corners we can decompose S′
22 in order to obtain

the position and orientation of the two or three planar surfaces which are represented
in the descriptor. This is illustrated in Figures 6(a) and 6(b), where a few image points
corresponding to rank two S′

22 and one point corresponding to rank three S′
22 have

been analyzed for position and orientation information of the planar segments. The
position and orientation of each segment is indicated using a red circle with a normal
line overlayed on the depth data or the ground truth data.

7 Summary and Conclusions

In this paper we have presented a novel representation of local 3D shape in terms of
planar surface patches and their boundaries. The representation can be constructed as a
10 × 10 matrix S′

22. For up to three local patches, S′
22 contains information about the

number of patches and their relative position and orientation. This information can be
extracted by making an SVD of S′

22 and analyzing the resulting factors. In particular,
the rank of S′

22 is the same as the number of patches.
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(a) Estimated depth data (b) Synthetic data

Fig. 6. Normals extracted from S22

Given a calibrated camera which translates with a known linear motion, the proposed
representation can be estimated from the corresponding motion field. In this paper one
method is presented which is based on first computing spatio-temporal orientation ten-
sors T from the image sequence and mapping these into S′

22 by means of the following
computation steps at each point in the image:

1. Form S20 = K T KT

2. Form S′
20 = local average of S20

3. Form S02 as the rank complement of S′
20

4. Form S22 = S20 ST
02

5. Form S′
22 = local average of S22

Here, K is a 4 × 3 matrix which contains formation about the camera parameters,
the camera motion, and the position in the image where we want to estimate S22,
Equation (28).

It should be emphasized that the method for estimating S′
22 presented here requires

that the local spatio-temporal orientation represented by T can provide an accurate
measure of the local image velocity by means of Equation (7). In general, this may not
be the case if the scene depicted by the camera contains surface patches of which some
are relatively close and others are distant. By choosing the estimation of T appropri-
ately, we can estimate v with high accuracy either for small or high velocities, but it is
difficult to get good accuracy in both cases.

Since S22 is the outer product of S20 and S02 and these two elements are second
order tensors, it follows that formally we can regard S22, and therefore also S′

22 as
fourth order tensors defined on a projective space. Furthermore, S22 is constructed out
of two factors, where S20 describes where in the scene a particular surface patch is
located, and S02 describes what surface it is in terms of orientation.
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Abstract. This paper deals with the computation of dense image correspon-
dences and the detection of occlusion. We propose a Bayesian approach to the
image registration problem. The images are regarded as noisy measurements of
an underlying ’true’ image-function. Additionally, the image data is considered
incomplete, in the sense that we do not know which pixels from a particular image
are occluded in the other images. We describe an EM-algorithm, which iterates
between estimating values for all hidden quantities, and optimizing the optical
flow by differential techniques. The Bayesian way of describing the problem
leads to more insight in existing differential approaches, and offers some natu-
ral extensions to them. The resulting system involves less parameters and gives
an interpretation to the remaining ones. An important feature is the photometric
detection of occluded pixels.

1 Introduction

A fundamental problem in the processing of image sequences is the computation of
optical flow. Optical flow is caused by the time-varying projection of objects onto a
possibly moving image plane. It is therefore the most general transformation, assigning
a two dimensional displacement vector to every pixel. The number of unknown param-
eters is twice the number of pixels in the image. In the case when one knows more
about the specific registration problem, the degrees of freedom can be reduced. Know-
ing the cameras and assuming rigid scenes lead to the constrained stereo or multi-view
stereo situation. In specific application one could decrease the number of parameters
that describe the optical flow at each pixel and use spline, homography, affine models
or models obtained from a principal component analysis.

In this paper we want to give a probabilistic recipe for general image matching which
can be used in case the flow fields can be described parametrically, as well as in the most
general case of optical flow. We formulate the correspondence problem in a probabilis-
tic framework. This results in an EM algorithm, whose maximization step involves
diffusion equations similar to existing differential optical flow approaches [3, 4, 5, 6, 7].

However, the probabilistic description now gives an interpretation to the most impor-
tant parameter (λ) which controls the balancing between image matching and flow field
smoothness. The formulation leads naturally to the detection of occlusions based on the
image values themself, which prevents the computation of the two (forward-backward)
optical flow fields. A similar strategy for the occlusion detection was used by Aach et
al. [8] for the stereo case. Our algorithm needs no additional parameters for detecting

B. Jähne et al. (Eds.): IWCM 2004, LNCS 3417, pp. 165–176, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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occlusions, and the relative contribution of the spectral components to the matching
term is handled automatically. With respect to our previous work [9] in this paper we
continue the discussion about optical flow priors and use a more sophisticated color
model. This allows to a certain extend to deal with differences in camera responses.

This paper is organized as follows. We proceed in section 2 with the explanation of
the image formation model and the associated probabilistic formalism. Both parametric
and non-parametric optical flow are dealt with and described in a single framework.
Section 3 describes an EM-based solution to the resulting energy. We discuss the im-
plications of the probabilistic view and compare our algorithm with other approaches.
Experiments on ground truth and real data are discussed in section 4.

2 Image Formation Model

Suppose we are given two n×m images I1 and I2 which associate a 2D-coordinate
x with an image value Ii(x). If we are dealing with color images, this value is a 3-
vector and for intensity images it is a scalar. 1 Our goal is to estimate a displacement
field F , parametrised by a parameter vector φ, which maps positions x1 in I1 onto
corresponding positions x2 in I2:

F : R2 → R2 : x1 → x2 = F(x1; φ) (1)

The most general expression of this displacement field is a two component optical flow
field, which allows unconstrained correspondences between both images:

F : R2 → R2 :
[
x1
y1

]
→

[
x2
y2

]
=

[
x1 + u(x1, y1)
y1 + v(x1, y1)

]
, (2)

where u() and v() are the X and Y -components of the flow field, respectively. In the
remainder of this paper, we will call this type of flow field non-parametric optical flow.
The nr. of DOF of the flow field is 2nm (twice the number of pixels in the images)
and the parameter vector φ contains all X and Y -components of the flow field:φ =
[u(1, 1), v(1, 1), u(1, 2), v(1, 2), ...u(n, m), v(n, m)]T .

Sometimes, both images display objects of the same object class (e.g. faces, cars,...)
and the optical flow field can be constrained to be a linear combination of prototypi-
cal flow fields which are derived as the principal components of example flows. The
displacement field is defined as:

F : R2 → R2 :
[
x1
y1

]
→

[
x2
y2

]
=

[
x1 + 〈u(x1, y1) 〉 +

∑
i φiui(x1, y1)

y1 + 〈 v(x1, y1) 〉 +
∑

i φivi(x1, y1)

]
, (3)

where 〈u(x1, y1) 〉 and 〈 v(x1, y1) 〉 are the average flow field components andui(x1, y1)
and vi(x1, y1) are the ith principal component of the flow field. The parameter vector
φ now consists of the linear coefficients φi of the motion model, and the number of
parameters is much less than 2nm. Alternatively, sometimes one would also like to use

1 In fact one could add other features such as filter responses to the image [7]. We continue the
discussion for general n-band images.
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simpler parametrical models for displacement such as translational, affine, homographic,
etc... motion. In this case, the displacement field is defined as:

F : R2 → R2 :
[
x1
y1

]
→

[
x2
y2

]
=

[
u(x1, y1, φ)
v(x1, y1, φ)

]
, (4)

where φ contains the particular set of coefficients that parametrise the motion model.
We will refer to both the linear principal component motion model and the paramet-
ric motion models as parametric optical flow. Note that both parametric and non-
parametric flow are denoted by F(x; φ), where the content of the parameter vector
depends on the type of model employed. With this joint notation, we wish to emphasise
that both types of optical flow are essentially the same. Furtheron, it will be shown that
this joint treatment can be maintained at the procedural level.

Faithful to the Bayesian philosophy, we regard the input images as noisy measure-
ments of an unknown ideal image I∗

1 . This allows us to write:

I1(x) = I∗
1 (x) + ε

C
(
I2(F(x; φ))

)
= I∗

1 (x) + ε ; ε ∼ N (0,Σ). (5)

where N is a zero-mean normal noise distribution with covariance matrix Σ. The model
includes a color transformation C, which takes into account different camera responses
for image I1 and I2. We use an affine color transformation defined by:

C : Rd → Rd : I(x) → S I(x) + o, (6)

where S is a d×d scaling matrix and o is a d-dimensional offset vector. The image
formation model assumes that (i) all objects in the scene are perfect diffuse reflectors,
(ii) the difference in camera response can be modeled by an affine color transforma-
tion, and (iii) the absense of pixel discretisation effects. The noise component captures
all deviations from these assumptions. The ideal image I∗

1 , the noise covariance ma-
trix Σ and color transformation parameters S and o are unknown, and their estimation
becomes part of the optimization procedure.

A major complication, especially when dealing with large displacements, is the oc-
clusion problem. This arises from the fact that not all parts of the scene, which are visi-
ble in the first image, are also visible in the second image due to geometrical occlusion.
When computing image correspondences, such occluded regions should be identified
and excluded from the matching procedure. This will be modeled by introducing a visi-
bility map V(x), which signal whether a scene point X that projects onto x in I1 is also
visible in image I2 or not. Every element of V(x) is a binary random variable which
is either 1 or 0, corresponding to visibility or occlusion, respectively. V(x) is a hidden
variable, and its value must be inferred from the input images.

Estimating the optical flow field F(x; φ) can now be formally stated as finding those
parameters φ which make the image correspondences I∗

1 (x) ⇔ C
(
I2(F(x; φ)

)
, re-

stricted to those pixels for which V(x)=1, most probable. We have restricted ourselves
to an image registration scenario involving two images. The case of N images has been
discussed in previous work on multi-view stereo and superresolution [10, 11].
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2.1 MAP Estimation

We are now facing the hard problem of estimating the quantities θ = {φ, I∗
1 ,Σ, S,o}

given input images I1 and I2. Furthermore, we have introduced the unobservable or
hidden variables V , which must also be inferred over the course of the optimization. In
a Bayesian framework, the optimal value for θ is the one that maximizes the posterior
probability p(θ|I1, I2). According to Bayes’ rule, this posterior can be written as:

p(θ |I1, I2) =
∫

p(I1, I2 |θ, V)p(θ |V)p(V)dV
p(I1, I2)

, (7)

where we have conditioned the data likelihood and the prior on the hidden variables V .
The denominator or ’evidence’ is merely the integral of the numerator over all possible
values of θ and can be ignored in the maximization problem. Hence, we will try to
optimize the numerator only. In order to find the most probable value for θ, we need
to integrate over all possible values of V which is computationally intractable. Instead,
we assume that the probability density function (PDF) of V is peaked about a single
value, i.e. p(V) is a Dirac-function centered at this value. This leads to an Estimation-
Maximization (EM) based solution, which iterates between (i) estimating values for V ,
given the current estimate of θ, and (ii) maximizing the posterior probability of θ, given
the current estimate of V . A more detailed description of this procedure will be given
later. So, given a current estimate V̂ for the hidden variables, we want to optimize:

q(θ |I1, I2) = p(I1, I2 |θ, V̂)p(θ | V̂) (8)

The a-posteriori probability of θ is proportional to the product of two terms: the data-
likelihood p(I1, I2|θ, V̂) and a prior p(θ|V̂), which we call L and P , respectively. We
now discuss both terms in turn.

2.2 Likelihood

Under the assumption that the image noise is i.i.d. for all pixels in both views, the data
likelihood L can be written as the product of all individual pixel probabilities.

L =
∏

x

p
(
I1(x)) |θ

) ∏

x

p
(
C
(
I2(F(x; φ))

)
|θ

)
, (9)

where the last product is restricted to those x for which V(x) = 1. Note that, by def-
inition, all pixels in I∗

1 are visible in I1. The assumption that neighbouring pixels are
uncorrelated is commonly made in dense image registration procedures. In practice,
however, correlations are present by non-lambertian reflectance or other local system-
atic intensity deviations.

Given the current estimate of the ideal image I∗
1 (x), the noise distribution Σ and the

color transformation parameters S and o, we can further specify the likelihood by the
normal distribution N :

L =
2∏

i=1

∏

x

1

(2π)d/2|Σ |1/2 exp
(

− 1
2
mi(x)T Σ−1mi(x)

)
, (10)
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where m2(x) = I∗
1 (x) − S I2(F(x; φ))−o and m1(x) = I∗

1 (x) − I1(x) are the
differences between the ideal image function and the input images Ii, the former one
estimated at the current values of the color and motion model parameters. The variable
d in the normalization constant denotes the dimensionality of the color space.

2.3 Prior

Assuming we have no specific preference for the image related parameters I∗
1 ,Σ, S

and o, for the current estimate V̂ the prior reduces to P ∝ p(φ). Depending on the type
of flow field, several choices for p(φ) can be made. In this section we show that most
common choices can be casted as a Gaussian prior on the parameter vector φ. The prior
P then takes the following general form:

P ∝ 1

|Σf |1/2 exp
(

−1
2

(φ − φ0)
T Σ−1

f (φ − φ0)
)
, (11)

where φ0 is the a-priori average parameter vector and Σf is a covariance matrix.
For parametrical optical flow we need to distinguish between two cases. In the case

of simple parametric motion models (affine, homography,...), a prior on φ is usually
ommited (i.e. p(φ) is assumed to be constant), and the MAP-estimate turns into a max-
imum likelihood estimate. Alternatively, this can be casted in the general form of equa-
tion 11 by assuming a distribution characterised by φ0 = 0 and Σf = λ1, where λ
is very large. For PCA derived linear optical flow field models, on the other hand, φ0

is the average flow field of the example flows and Σf = λΛ, where Λ is a diagonal
matrix consisting of the eigenvalues of the principal components of the flow field. The
parameter λ can be tuned to adjust the relative importance of P w.r.t. L.

For non-parametrical optical flow, it is well known that that the problem is ill-posed,
i.e. multiple equally likely solutions exist, and an additional smoothness constraint
needs to be imposed on the solution. Often the connection between the smoothness
or regularisation terms and the associated prior distribution is not made. Establishing
this connection, however, leads to an interpretation of the most critical parameter in the
optical flow energy equations, which is the relative weight between the matching and
smoothness term. The smoothness constraint on the solution can be written as:

P ∝ 1

|Σd |1/2 exp
(

−1
2
(
D(φ − φ0)

)T
Σ−1

d

(
D(φ − φ0)

)
)

(12)

where D is a 2nm×2nm derivative operator and Σd is a covariance matrix for the
derivative distribution. The operator D is given by:

Dφ =

⎛

⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜
⎝

∂/∂x 0 ... 0
∂/∂y 0 ... 0

0 ∂/∂x 0 ...
0 ∂/∂y 0 ...
. . . .
0 ... 0 ∂/∂x
0 ... 0 ∂/∂y

⎞

⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜
⎝

u(0, 0)
v(0, 0)
u(0, 1)
v(0, 1)

.
u(n, m)
v(n, m)

⎞

⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟
⎠

(13)

and takes at each pixel location the partial derivatives of the two flow field components
with respect to x and y.
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Isotropic prior. The simplest form to introduce prior knowledge on the optical flow
field has been introduced by Horn and Schunk. It is the classical smoothness assump-
tion, which penalizes all deviations from a constant flow field [3]. This model can be
explained by making the following substitution in equation 12: φ0 = 0 and Σd = λ1.
Equation 12 now simplifies to:

P ∝ 1

|λ(DTD)−1 |−1/2 exp
(

− 1
2λ

φT DTDφ

)
(14)

where DTD is the Laplacian operator and λ controls the width of the distribution of Dφ.
Note that this equation can be casted in the general form of equation 11, by setting Σf

equal to λ(DTD)−1. This covariance matrix corresponds to a decay of the correlation
between the flow field vectors in function of the distance between their locations in the
image plane: nearby flow vectors are highly correlated, whereas flow vectors which are
far apart are uncorrelated. Smaller values of λ realize a stronger spatial correlation of
the nearby optical flow vectors. Note that a value for λ can be estimated as the expected
range of correlation between the optical flow vectors. Discontinuities in the flow field
cannot be modeled.

Anisotropic prior. Anisotropic versions of the Horn and Schunck constraint are used
by Alvarez et al. [6], Proesmans et al. [5], Nagel [4] or Brox et al. [7]. All assume a
zero mean flow distribution, i.e. φ0 = 0. In the work of Alvarez et al., anisotropy is
dependent on the local direction of the image gradient. The regularisation is data-driven:
if the image I∗

1 suggests a discontinuity by the presence of a high image gradient at a
particular location x, a flow field discontinuity at x is allowed. In [12], a diffusion tensor
at pixel location x is defined as follows:

T (∇I1(x)) =
1

|∇I1(x) |2 + 2ν2

(
∇I⊥

1 (x)∇I⊥T
1 (x) + ν21

)
, (15)

where 1 is the identity matrix, ν is a parameter controlling the degree of anisotropy
and ∇I⊥

1 (x) is the vector perpendicular to ∇I1(x). For color images, the tensor is de-
fined as the sum of the three individual color channel tensors. The associated diffusion
process can be formulated as a Gaussian prior on the flow field vector φ, by defining
Σ−1

d in eq.12 to be a block diagonal matrix with entries T (∇I1(x)). This guarantees
the realization of the prior belief that discontinuities have their origin at hight gradient
directions. Equation 12 now becomes:

P ∝ 1

|λ(DTΣ−1
d D)−1 |−1/2 exp

(
− 1

2λ
φT DTΣ−1

d Dφ

)
. (16)

This equation can be casted in the general form of equation 11, by setting Σf equal to
λ(DTΣ−1

d D)−1. Like in the isotropic case, this covariance matrix correlates flowfield
vectors which are nearby in the image plane, but this correlation is broken if large image
gradients exist between the image locations from which these flowfield vectors emanate.
In principle, the values of ν and λ could be estimated by evaluating P (λ, ν|p, I∗

0 ) on
ground truth data.
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We can now turn back to the optimization of θ. Instead of maximizing the posterior
in (8), we minimize its negative logarithm. This leads (upto a constant) to the following
energy:

E[θ] =
2∑

i=1

∑

x

Vi(x)
[
1
2
mi(x)T Σ−1mi(x) + log((2π)

d
2 |Σ|)

]

+ log(|Σf |) + φT Σ−1
f φ. (17)

The first line of equation 17 represents the likelihood (eq. 10) and is usually called the
matching or data term. The second line is the prior or smoothness term.

By comparing this result with other important optical flow approaches, described for
instance in [5,6,7] or [2] for an overview, we want to discuss now the implications of the
Bayesian approach to the energy 17. First of all, the data term in eq.(17) now contains
Σ−1, which performs a global, relative weighting of the different spectral components.
By adding also the derivative of the image to the matching term as for instance in Brox
et al. Σ would also take care of the different magnitude of signal and derivative signal
such that both contributions to the data term are weighted correctly. By doing so the
additional parameter introduced in [7] would disappear.

Furthermore, Σ−1 also globally weights the importance of the matching term w.r.t.
the smoothness term. More image noise decreases the norm of Σ−1. This automatically
results in a more smooth solution, which is a desirable mechanism. A further modi-
fication of the data term is the local weighting of the image value differences by the
visibilities V(x). When a pixel receives a low visibility score, the smoothness term lo-
cally gets more important. This avoids that wrongly matched occluded pixels pull, by
the action of the smoothness term, neighboring unoccluded pixels in the wrong direc-
tion. Another difference is related to the model image I∗

1 . Instead of comparing I1(x)
with C

(
I2(F(x; φ))

)
, which is the usual practice in OF computation, the Bayesian

framework tells us to use I∗
1 (x) instead. This results again in a visibility dependent

weighting.

3 EM Solution

In the previous paragraph, an energy equation, w.r.t. the unknown quantities θ, was
derived. This energy corresponds to the negative logarithm of the posterior distribution
of θ, given the current estimate of the hidden variable V . Now we will derive the EM-
equations, which iterate between the estimation of V and the minimization of E(θ).

3.1 E-Step

On the (k + 1)th iteration, the hidden variable V(x), is replaced by their conditional
expectation given the data, where we use the current estimates θ(k) for θ. The expected
value for the visibility is given by:

E[V|I∗
1 ,Σ, φ, S,o] ≡ Pr(V =1|I∗

1 ,Σ, φ, S,o). (18)
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According to Bayes’ rule, the latter probability can be expressed as:

Pr(V =1|I∗
1 ,Σ, φ, S,o) =

p(φ|V =1, I∗
1 ,Σ, S,o)

p(φ|V =1, I∗
1 ,Σ, S,o) + p(φ|V =0, I∗

1 ,Σ, S,o)
,(19)

where we have assumed equal priors on the probability of a pixel being visible or
not. Given the current estimate of θ, the PDF p(φ|V = 1, I∗

1 ,Σ, S,o) is given by the
value of the noise distribution evaluated over the color-difference between I∗

1 (x) and
C(I2(F(x; φ))): p(φ|V = 1, I∗

1 ,Σ, S,o) = N
(
m2;0,Σ

)
. The second PDF is more

difficult to estimate, because it is hard to say what the color distribution of a pixel,
which has no real counter-part in I2, looks like. We provide a global estimate for the
PDF of occluded pixels by building a histogram of the color-values in I∗

1 which are
currently invisible. This is merely the histogram of I∗

1 where the contribution of each
pixel is weighted by (1 − V(x)). Note that, if a particular pixel in I∗

1 is marked as not-
visible, in the next iterations this will automatically decrease the visibility estimates of
all similarly colored pixels. This makes sense from a perceptual point of view, and has
a regularizing effect on the visibility maps. The update equations for V(x) are now:

V ← N (m2;0,Σ)
N + HISTI∗

1 ,(1−V)(I∗
1 )

. (20)

3.2 M-Step

At the M-step, the intent is to compute values for θ that maximizes (17), given the
current estimates of V . This is achieved by setting the parameters θ to the appropriate
root of the derivative equation, ∂E(θ)/∂θ = 0.

For the image related parameters I∗
1 , S, o and Σ, a closed form expressions for the

roots can be derived and the update equations are:

I∗
1 (x) ← I1(x) + V(x)C(I2(F(x; φ))

1 + V(x)

Σ ←

∑

x

(
m1(x)m1(x)T + V(x)m2(x)m2(x)T

)

∑

x
(1 + V(x))

S ←
(

∑

x

V(x)(I∗
1 (x) − o)I2(x)T

) (
∑

x

V(x)I2(x)I2(x)T

)−1

o ← −

∑

x
V(x)(I∗

1 (x) − SI2(x))
∑

x
V(x)

(21)

The ideal image I∗
1 is, conform to intuition, a weighted sum of the input images. The

value of Σ is similarly weighted and composed of the mean color covariances.
To derive the update equation for the transformation F(x; φ), we use here a matrix-

vector notation in order to bring parametric and non-parametric optical flow into a single
framework. The result is a single equation for which we will later show its interpreta-
tion in the more common PDE notation. Consider the main result of the first section - the
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Fig. 1. Synthetic optical flow experiments. left:the average angular error of the optical flow field
for different values of color offset between the images (circles and boxes indicate the experiment
with and without the update of o. right: error in estimating the color offset.

energy in eq. 17 - where we only retain the terms depending on the transformation
parameters φ:

E[φ] =
∑

x

V(x)
1
2
m2(x)T Σ−1m2(x) + φT Σ−1

f φ , (22)

The visibilities V(x) are fixed for a particular instance of the M-step. For a given
maximization step the four unknowns are estimated in turn while keeping the others
fixed. In that case the minimum of the energy is again given by a vanishing first deriva-
tive ∂E[φ)]/∂φ. This derivative is given by:

∂E[φ)]
∂φ

=
∑

x

V(x)
(

∂m2(x)
∂φ

)T

Σ−1m2(x) + Σ−1
f φ , (23)

with:

∂m2(x)
∂φ

= −
[
∂SI2(F(x; φ))

∂x
,
∂SI2(F(x; φ))

∂y

][
∂Fx(x;φ)

∂φ0
, · · · , ∂Fx(x;φ)

∂φn
∂Fy(x;φ)

∂φ0
, · · · ,

∂Fy(x;φ)
∂φn

]

= −∇SI2(F(x; φ))
∂F(x; φ)

∂φ
. (24)

Equation 23 can be written in matrix-vector form as follows:

∂M2

∂φ

T

VΣ−1
l M2 +

1
λ
Σ−1

f φ = 0 . (25)

M2 is a vector of dimension nmd (number of pixels times number of image bands)
containing the values of m2(x) for every pixel. V is a diagonal matrix with elements
V(x) and Σ−1

l a block diagonal matrix, with block diagonal elements Σ−1.
Equation 25 is a nonlinear matrix equation of the form Aφ = b, in which b is

still dependent on the unknown solution φ. In order to solve this system a linearization
similar to Proesmans et al. [5, 6] leads to an approximation of I2(F(x; φ)) in eq. 25.
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We split the value of F(x; φ) into a current and a residual estimate, i.e. F(x; φ) =
F(x; φo + φr). Cutting of terms ≥ O(φ2

r) from the Taylor expansion we get for m2:

m2 = I∗
1 − S

(
I2(F(x; φ0)) + ∇I2(F(x; φ0))

∂F(x; φ0)
∂φ

(φ − φ0)
)

− o (26)

which leads by using eq. 23 with this m2-term and his derivative to the final equation:

(
Σ−1

p + A
)
φ = Aφ0 + b

A =
∂M2

∂φ

T

VΣ−1
l

∂M2

∂φ

T

;b =
∂M2

∂φ

T

VΣ−1
l M2 (27)

For non-parametric optical flow eq. 27 is a huge, but sparse matrix equation and the
solution can be obtained by Gauss-Seidel or SOR iterations. It is for this case similar to
our previous formulation of optical flow [9], but now containing also terms that allow
affine color transformations.

Parametric optical flow is described by only a few parameters, so the size of the
matrix Σ−1

p is small and the system can be solve by standard matrix solvers.

4 Experiments

The synthetic experiment shows the advantage of using a transformation model for
the image intensities compared to the case where one would not allow the intensities
to change. The results of a non-parametric optical flow experiment with isotropic prior,
where we have added different magnitudes of color offsets o to one images, is shown
in fig. 1.

The experiment on a real image pair shows the solution of different parameteriza-
tions an a nearly planar wall. Under the assumption that the camera is not disturbed by
radial distortion and the wall is perfectly planar a homography would explane this trans-
formation. In fig. 2 the two input images are shown next to the checker board image of
the two images without applying the geometric and color transformation. One can see a
small change in the color values between the images. Fig.3 shows the resulting checker
board image with the applied transformation and with the compensation of the color
changes on the left side. On the right side one can see the visibility maps V(x). We
have used here different paramterisations for the transformation.

1) pure global translation T : (x′, y′) = (x + tx, y + ty) (2 parameters).
2) non-parametric optical flow T : (x′, y′) = (x + u(x, y), y + v(x, y) (nxny ∗ 2
parameters).

One can see nicely that the translation transformation cannot explane the real transfor-
mation and so the visibility maps show black areas, indicating outliers from the trans-
formations model. Non-parametric optical flow can explane this transformation and the
outliers in this case are caused by deviations from the noise model.
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Fig. 2. Two input images for the parametric optical flow experiment (left). Right: Checker board
image by zero transformation.

Fig. 3. Left: Checker board image of the registrations with taking into account the intensity off-
set (left). Right: visibility maps V(x). from top to button the results of a translation and non-
parametric optical flow are shown.

5 Conclusions

We have presented an optical flow algorithm that simultaneously estimates image dis-
placements and occlusions, as well as the noise distribution and denoised image, as
part of an EM algorithm. Starting from relatively straightforward probabilistic consid-
erations, we arrive at an energy formulation with a strong intuitive appeal. The energy
often taken as a point of departure in other differential optical flow approaches, turns
out to be a special case of this result. More specifically, it can be derived from our for-
mulation by assuming unit strength noise, full visibility and by setting the unknown
’true’ irradiance equal to the first image. Our formulation is general enough to combine
parametric and non-parametric optical flow approaches into a single scheme. The esti-
mation of visibilities (occlusions) is naturally incorporated into the algorithm, similar in
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flavor to outlier detection in iteratively reweighted least squares estimation. Noticeably,
our algorithm does not introduce additional parameters to realize anisotropic diffusion
and to detect occluded pixels.

We have further shown the relation of the smoothness term in many optical flow
algorithms with Bayesian priors leading to the interpretation of the λ parameter that
controls the relative importance of smoothness and matching. In our opinion this is an
important aspect and hopefully opens the focus on specific priors as a way to develop
nearly parameter free optical flow algorithms.

Acknowledgment. The investigations reported in this contribution have been partially
supported by the European Union IST ERMIS and K.U. Leuven Research fund GOA-
VHS.
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Abstract. We present an optical flow-based algorithm to estimate heart wall mo-
tion from ultrasound sequences. The method exploits two ultrasound modalities,
i.e., B-mode (grayscale data) and tissue Doppler (partial velocity measurements).
We use a local affine velocity model to account for typical heart motions such as
contraction/expansion and shear. The affine model parameters give also access to
so-called strain rate parameters that describe local myocardial deformation such
as wall thickening. The estimation of large motions is made possible through
the use of a coarse-to-fine multi-scale strategy, which also adds robustness to the
method.

1 Introduction

Echocardiography is a widely used imaging technique to examine myocardial function
in patients with known or suspected heart disease. The analysis of ventricular wall mo-
tion and deformation, in particular, allows to assess the extent of myocardial ischemia
and infarction. In clinical practice, the analysis mainly relies on visual inspection or
manual measurements by experienced cardiologists. Manual methods are tedious and
time-consuming, and visual assessment leads to qualitative and subjective diagnoses
that suffer from considerable inter- and intraobserver variability. Automating the anal-
ysis of echocardiographic images is therefore highly desirable but also challenging be-
cause of the low image quality and the high amount of speckle noise.

Modern ultrasound systems provide different imaging modalities among which
B(rightness)-mode and tissue Doppler play a crucial role; B-mode sequences provide
dynamic grayscale information of the cardiac structures, while tissue Doppler yields
one-dimensional velocity estimates of the moving tissue along the scan lines.

Different methods have been proposed to estimate two-dimensional ventricular mo-
tion from the grayscale information of the B-mode loops. Among others, so-called ac-
tive contour or snake techniques [1] were proposed to track cardiac borders [2]. This

B. Jähne et al. (Eds.): IWCM 2004, LNCS 3417, pp. 177–189, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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approach was extended to active shape models, which were applied to echocardiograms
with partial success [3].

To obtain a dense motion field that covers the whole myocardium and is not restricted
to its borders, some researchers proposed to compute cardiac displacement fields using
non-rigid registration techniques; however, their application to ultrasound is still limited
[4, 5].

Another approach to obtain dense motion data is based on the so-called optical
flow principle [6]. Application examples of this approach to echocardiograms yielded
promising results [7, 8]. An evaluation of different optical flow methods applied to
echocardiograms can be found in [9].

In this paper, we propose a new motion analysis approach that is based on both
modalities, B-mode and tissue Doppler. Based on the optical flow principle, we estimate
a velocity field from the B-mode echocardiograms; in addition, we constrain the motion
field such that its projections along the scan lines are in good agreement with the tissue
Doppler measurements.

Besides rigid displacement, systolic myocardial function is characterized by a signif-
icant wall thickening and circumferential/longitudinal shortening. Quantification of my-
ocardial deformation allows to differentiate actively contracting tissue from infarcted
one that merely moves along with neighboring healthy segments. To account for this,
we use a local affine model for the velocity in space that inherently yields regional de-
formation information in terms of so-called strain rate. The affine motion model also
covers basic motion patterns such as rotation and shear that typically appear during
cardiac contraction and expansion.

The paper is organized as follows. We first describe the optical flow principle to ana-
lyze motion from B-mode echocardiograms in Section 2. After reviewing the principles
of tissue Doppler imaging in Section 3, we present the proposed bimodal algorithm in
Section 4. Our coarse-to-fine multi-scale strategy that allows to estimate large motions
is sketched in Section 5. The extraction of myocardial strain rate information from the
affine model parameters is described in Section 6. Finally, numerical results from syn-
thetic data and clinical echocardiograms are presented in Section 7. Further details and
experimental results can be found in the monograph [10].

2 Motion Analysis from B-Mode Echocardiograms

Gradient-based optical flow estimation relies on the assumption that the intensity of a
particular point in a moving pattern does not change with time. Let I(x, y, t) denote the
intensity of pixels at location r = (x, y) and time t in a B-mode image sequence. Then
the constant intensity assumption can be expressed as [6]

Ix(r, t)u(r, t) + Iy(r, t) v(r, t) + It(r, t) = 0, (1)

where Ix, Iy and It denote the spatial and temporal derivatives of the image intensity.
The velocities u and v are, respectively, the x- and y-components of the optical flow
that we wish to estimate. Since (1) is a single equation in two unknowns u and v, it can-
not be solved uniquely without introducing additional constraints. The Lucas-Kanade
method [9], for instance, assumes the velocity to be constant within small spatial neigh-
borhoods. It has been applied to echocardiograms by Chunke et al. [11].
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Fig. 1. The tissue Doppler velocity vD corresponds to the projection of the true velocity v along
the beam direction α

3 Principles of Tissue Doppler Imaging

Velocity measurements using pulsed-wave ultrasound have become an important diag-
nostic tool in echocardiography [12]. In two-dimensional tissue Doppler imaging (TDI),
the beam is scanned radially over the region to be imaged. As illustrated in Fig. 1, the
system measures the tissue velocity component

vD = ‖v‖2 cos(β)

at positions along each beam, where β denotes the angle between the true velocity
vector v and the beam direction α. Thus, the measured motion depends highly on β. In
particular, the modality is totally blind to displacements orthogonal to the scan line.

Conventional Doppler ultrasonography is based on the principle that vD is propor-
tional to the small frequency shift fD in the ultrasound carrier frequency f0 between
transmitted and received echoes, i.e.,

vD =
c

2f0
fD,

where c denotes the speed of sound.
Current ultrasound systems allow the simultaneous acquisition of B-mode and tissue

Doppler signals in real-time. The Doppler velocities are usually color-coded and super-
imposed onto the B-mode echocardiogram as shown in Fig. 8(b) in Section 7.2. However,
the interpretation of these radial projections of complex motion patterns, such as trans-
lation, rotation and shear, is difficult and requires a sufficient level of experience [12].

4 Bimodal Motion Analysis from B-Mode and Tissue Doppler
Echocardiograms

Since both modalities, B-mode and tissue Doppler, provide valuable motion informa-
tion, we integrate these two kinds of information to estimate a true two-dimensional
velocity field. Inspired by the Lucas-Kanade method, we propose a sliding-window al-
gorithm. Since typical heart motions are given by rotation, expansion, contraction, and
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shear, we use a local affine model for the velocity in space. Let r0 = (x0, y0)T de-
note the center of a small image region for a frame at time t. Omitting the temporal
parameter for notational convenience, the spatial affine model is defined as

v(r) = v0 +
(

ux uy

vx vy

)
· (r − r0) , (2)

where r = (x, y)T and v(r) = (u(r), v(r))T . The vector v0 corresponds to the ve-
locity at the center point r0; ux, uy , vx, and vy are the first order spatial derivatives
of u and v, respectively. These derivatives are assumed to be constant within the local
neighborhood.

We estimate the local model parameters by minimizing the weighted least-squares
criterion

∑

n

w(rn − r0)
((

Ix(rn)u(rn) + Iy(rn) v(rn) + It(rn)
)2

+ λ
(
cos(αn)u(rn) + sin(αn) v(rn) − vD(rn)

)2
)
, (3)

where the sum is taken over all pixels rn inside an observation window w centered at
position r0. The first term of the cost function is equal to the optical flow constraint
applied to the B-mode data. The second term corresponds to the difference between the
measured tissue Doppler velocities and the velocity field projection along the scan line.
The scan line direction at position rn is given by the unit vector (cos(αn), sin(αn)).
The relative influence of the B-mode data versus the tissue Doppler measurements to
the resulting velocity estimate is controlled by the non-negative weighting parameter
λ. The symmetric window function w gives more weight to constraints at the center of
the local spatial region than to those at the periphery. A well suited window function is
w(x, y) = βn(x)βn(y), where βn is the symmetrical B-spline of degree n ∈ N [13].
B-splines rapidly converge to Gaussians when their degree increases which ensures
isotropy of the window in multiple dimensions.

By inserting (2) into (3) and differentiating the latter one with respect to each of the
six unknown model parameters x = (u0, v0, ux, uy, vx, vy)T , we obtain a symmetric
linear system Ax = b of size (6 × 6) that has to be solved at each window position.

Besides the proposed least-squares approach, the model parameters may also be
determined using other local techniques, such as the total-least-squares method [14].
Global methods based on Horn-Schunk-like regularization schemes [15, 16] may also
be applied. However, these options are not considered here.

4.1 Choice of Window Size

The optimal size of the window function w depends on the underlying motion field and
is thus not known a priori. In regions where the displacement field is essentially ho-
mogeneous in space, the motion can be well fitted by the affine model within a large
observation window. On the other hand, smaller windows will be better suited for pro-
cessing areas where the motion pattern varies rapidly, which is for example the case at
myocardial boundaries.
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Fig. 2. Coarse-to-fine multi-scale strategy in space. Nx and Ny are the x− and y-dimensions of
the images at level k = 0, respectively. Larger motions are estimated at coarser scales while
smaller motions are refined at finer scales.

To be locally adaptive, we compute and solve the local linear systems for different
window sizes and choose the most promising fit based on a figure of merit; in par-
ticular, we use windows at dyadic scales. Our strategy is to use windows as large as
possible to increase noise robustness, while not violating the motion model assump-
tions. To increase computational efficiency, we developed a multi-channel, wavelet-like
algorithm to compute the system coefficients recursively for successively larger window
sizes [17].

5 Coarse-to-Fine Multi-scale Strategy

Estimating large motions of moving patterns that contain high frequencies may lead
to aliasing artifacts. To be able to estimate larger motions, we apply a coarse-to-fine
strategy in space. As sketched in Fig. 2, we compute an image pyramid for each frame
in the image sequence. In particular, we use a spline-based least-squares pyramid [18]
with dyadic scale progression. At each pyramid level 0 ≤ k ≤ K , the original image
I(0)(x, y) = I(x, y), at level k = 0, is approximated by the spline model

I(k)(x, y) =
∑

m,n

c(k)(m, n)βn
( x

2k
− m,

y

2k
− n

)
. (4)

At each level, the number of spline coefficients c(k) is reduced by the factor 2 in each
dimension, resulting in a successively coarser image approximation. The corresponding
Doppler signal is decomposed analogously using the same pyramid structure.

Our coarse-to-fine multiresolution strategy for motion estimation works as fol-
lows. Starting at the coarsest pyramid level k = K , the motion vectors at each grid
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x0(t) x1(t)L(t)

u(x0(t),t) u(x1(t),t)
Fig. 3. Deformation of a one-dimensional object of length L at time t. The end points x0 and x1

move with velocities u(x0, t) and u(x1, t), respectively.

position are determined by choosing locally the optimal window size as described in
Section 4.1. The motion vectors are then transferred to the next finer resolution level
k − 1 as initial estimates. The velocities are upscaled to the resolution level k = 0 by
multiplying the vectors with 2k. Values on intermediate grid positions are computed by
using linear interpolation. If the upscaled coarser-scale motion vector does not exceed
the level-dependent length 2k−1 (a priori test), it is re-estimated in the same fashion as
described above. An initial, coarser-scale estimate is replaced only, if the length of the
re-estimated vector does not exceed the level-dependent limit 2k−1 (a posteriori test).
Having completed the finest pyramid level, we fit a spatio-temporal B-spline model to
the discrete output to obtain a global, continuous representation of the velocity field.

6 Strain Rate Analysis

Local myocardial velocity is an important feature to asses myocardial function. How-
ever, it does not allow to differentiate actively contracting tissue from infarcted one that
merely moves along with neighboring healthy segments. During normal physiological
contraction, the pumping capacity of the ventricle is usually raised by an additional wall-
thickening and a longitudinal contraction of the basal segments towards the apex. Due
to the wall thickening, the velocity of the endocardium (inner border) is higher than that
of the epicardium (outer border), but the difference is not necessarily related to the un-
derlying wall displacement. Thus, the spatial velocity gradient—also known as strain
rate [19]—can be of great diagnostic value to differentiate active form passive tissue.

6.1 Definition of Strain and Strain Rate

Strain defines the amount of deformation of an object caused by an applied force. As
sketched for the one-dimensional case in Fig. 3, the so-called natural or Eulerian strain
εN is defined as

εN (t1) =
∫ t1

t0

dεN (t), (5)

where

dεN (t) =
L(t + dt) − L(t)

L(t)
(6)

is an infinitesimally amount of deformation occurring during the infinitesimally time
interval dt.
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The instantaneous rate of deformation—the so-called natural strain rate—is defined
as

dεN (t)
dt

=
L̇(t)
L(t)

. (7)

Using the definition L(t) = x1(t) − x0(t) and the fact that L̇(t) = ẋ1(t) − ẋ0(t) =
u(x1(t), t) − u(x0(t), t), it follows that

dεN (t)
dt

=
u(x1(t), t) − u(x0(t), t)

x1(t) − x0(t)
. (8)

For limx1→x0 , this converges to the spatial derivative ∂u
∂x

∣
∣
x0(t)

= ux|x0(t) of the in-

stantaneous velocity u(x, t). Thus, strain rate can be interpreted as the speed at which
tissue deformation (i.e., strain) occurs; it is measured in (cm/s)/cm = 1/s units. Strain
and strain rate relate to each other as displacement does to velocity.

Current approaches to calculate myocardial strain rate are based on tissue Doppler
imaging [20, 21], where the axial strain rate component is computed as the spatial
derivative of the Doppler velocities along the scan lines. Since this method critically
depends on the insonification direction, it is highly desirable to extend the strain rate
analysis to two dimensions.

6.2 Two-Dimensional Strain Rate Analysis

In the case of our motion analysis method, two-dimensional strain rate is inherently
contained in the underlying local motion model (2). The Jacobian matrix of spatial
velocity derivatives,

J =
(

ux uy

vx vy

)
, (9)

is also known from mechanical engineering as strain rate tensor. It can be decomposed
into two terms which are symmetric and antisymmetric, respectively [22]:

J = R + D, (10)

where

R =
1
2
(J − JT ) =

(
0 − vx−uy

2
vx−uy

2 0

)
(11)

and

D =
1
2
(J + JT ) =

(
ux

vx+uy

2
vx+uy

2 vy

)
. (12)

The matrix R corresponds to a rigid, rotational velocity field that leaves the local tissue
area unchanged. The angular velocity is given by ω = (vx − uy)/2 which corresponds
to one-half of the curl of the velocity field. The second term, D, accounts for the de-
formation of the heart tissue, both contraction/expansion and shear. The components
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Fig. 4. Strain rate visualization by means of ellipses. The semi-axes of a circle with radius r0 are
scaled according to the corresponding eigenvalues of the deformation matrix D.

on the principal diagonal describe a dilation along the coordinate axes, whereas the
off-diagonal components correspond to a shearing. Since D is symmetric, it has real
eigenvalues λ1, λ2 and orthonormal eigenvectors u1 and u2; it can be decomposed as

D = U
(

λ1 0
0 λ2

)
UT , (13)

where

U = (u1,u2) =
(

cosφ − sinφ
sin φ cosφ

)
(14)

is the rotation matrix specified by the eigenvectors, and where φ denotes the rotation
angle of the coordinate system. Thus, the deformation matrix D can be interpreted as
a pure contraction/expansion along the directions of the eigenvectors. Negative eigen-
values λi describe contraction, while positive eigenvalues correspond to dilation of the
heart tissue. The divergence, given by the trace of D (or equivalently by the sum of its
eigenvalues), describes the local area change of the tissue.

6.3 Strain Rate Visualization

For visualization, the principal deformation directions and magnitudes are superim-
posed in the form of small ellipses onto the echocardiograms inside the time varying
ROI as shown in Fig. 4. The semi-axes directions correspond to the eigenvectors of D
and their lengths are given by

(
1 +

λi

λMax

)
r0, i = 1, 2,

respectively. The normalization parameter λMax is the maximum absolute value of all
eigenvalues computed within the ROI. The parameter r0 corresponds to the radius of
the non-deformed circle and controls the overall size of the ellipses. Negative eigenval-
ues (tissue contraction) lead to an axis-shortening, whereas positive eigenvalues (tissue
dilation) correspond to an elongation of the corresponding semi-axis.
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(a) (b)

Fig. 5. (a) Frame of synthetic B-mode echocardiogram with superimposed estimated velocity
field during diastole. (b) Color-coded simulated tissue Doppler velocities.

7 Numerical Results

For validation purposes, the algorithm was tested on synthetic data and on clinical
echocardiograms. The echocardiograms were acquired with a HP Sonos 5500 ultra-
sound system.

7.1 Application to Synthetic Data

The algorithm was first tested on synthetic ultrasound sequences for which the exact
motion field and corresponding tissue Doppler velocities are known. The data was gen-
erated by warping a single reference frame of point scatterers. To simulate noise, we
added scatterers of random echogenicity to each frame. The final B-mode images were
obtained by applying a simple, linear ultrasound imaging model to the perturbed point
scatterer images [23]. The example sequence used here simulates a full cardiac cycle
of a left ventricular short axis view (SAX) with an underlying translation to the up-
per right. The applied wall thickening and thinning was chosen such that it satisfies
the incompressibility constraint. Fig. 5(a) shows one diastolic frame of the sequence to-
gether with the superimposed estimated velocity field. The color-coded simulated tissue
Doppler velocities are shown in Fig. 5(b).

To assess the performance of the algorithm, we use an angular error measure between
the estimated velocity v̂ and the exact velocity v which is given by θ = arccos(<
v, v̂ > / (‖v‖2 ‖v̂‖2)). The mean angular error θ is computed by averaging θ over the
whole image sequence.

Fig. 6 illustrates the average error for different values of the parameter λ that controls
the relative influence of B-mode versus tissue Doppler data in (3). First, the mean error
decreases significantly with increasing weight of the tissue Doppler term. The relative
error improvement between λ = 0 (only B-mode data is used) and λ = 500 is 19.82%.
For larger values of λ, the error increases again and the local linear systems become
more and more ill-conditioned.

Since the motion field captures the superposition of translational motion, radial out-
ward/inward motion and deformation, its interpretation remains difficult; in contrast, the
estimated strain rate (Fig. 7) is independent from the underlying rigid translation and
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Fig. 6. Average angular error θ of synthetic ultrasound data for different values of λ

(a) Diastole (b) Systole

Fig. 7. Estimated strain rates from synthetic ultrasound data during diastole (a) and systole (b).
Strain rate is independent from underlying rigid translation.

represents well the uniform deformation of the model. The myocardial thinning during
expansion is clearly indicated by the circumferentially elongated ellipses in Fig. 7(a);
likewise, the myocardial thickening during contraction is represented by the radially
dilated ellipses in Fig. 7(b). The fact that the applied deformation close to the inner
boundary is larger than at the outer boundary is also indicated by the different ratios of
long to short semi-axis lengths.

7.2 Application to Clinical Data

For a first in vivo validation, we applied the method to a set of clinical echocar-
diograms. Fig. 8(a) shows one frame of a B-mode sequence during systole. The
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(a) (b)

Fig. 8. Results from clinical echocardiogram during systole. (a) Estimated velocity field. (b) Input
data: B-mode echocardiogram with superimposed color-coded Doppler velocities. Colors code
measured motion towards the transducer (Range: −11 to 11 cm/s).

(a) Diastole (b) Systole

Fig. 9. Estimated strain rates from apical short axis view. Myocardial radial wall thinning and
circumferential lengthening during diastole is indicated by the deformation map (a). The reversed
deformation during systole is shown in (b).

corresponding estimated velocity field is superimposed. In contrast to TDI, that mea-
sures mainly the motion towards the apex (Fig. 8(b)), the estimated motion field also
captures the significant inward motion of the cardiac walls. This corresponds well to
the expert echocardiographic reading.

The ability to estimate myocardial deformation in clinical echocardiograms acquired
during routine clinical examinations is demonstrated in the short axis view shown in
Figure 9. Since tissue Doppler was not acquired in this case, the motion field was esti-
mated from the B-mode data only (λ = 0). The circumferential alignment of the ellipses
in Fig. 9(a) documents the typical wall thinning and circumferential lengthening dur-
ing diastole. In contrast, the ellipses are elongated and aligned radially in Fig. 9(b),
indicating myocardial wall thickening and circumferential shortening during systole.
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8 Conclusion

We have proposed a new method to estimate heart motion from echocardiograms that
combines information from B-mode and tissue Doppler modalities. Experiments on
synthetic data demonstrate that the inclusion of tissue Doppler measurements improves
the motion field accuracy. The method also yields two-dimensional strain rate infor-
mation that characterizes myocardial deformation. First applications of the method to
clinical echocardiograms give realistic results.
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Abstract. Under certain assumptions, a moving camera can be self-calibrated
solely on the basis of instantaneous optical flow. However, due to a fundamental
indeterminacy of scale, instantaneous optical flow is insufficient to determine the
magnitude of the camera’s translational velocity. This is equivalent to the baseline
length indeterminacy encountered in conventional stereo self-calibration. In this
paper we show that if the camera is calibrated in a certain weak sense, then,
by using time-varying optical flow, the velocity of the camera may be uniquely
determined relative to its initial velocity. This result enables the calculation of
the camera’s trajectory through the scene over time. A closed-form solution is
presented in the continuous realm, and its discrete analogue is experimentally
validated.

1 Introduction

It is well known that, under certain assumptions, a camera moving smoothly through a sta-
tionary environment can be self-calibrated based on instantaneous optical flow. However,
because of a fundamental indeterminacy of scale, instantaneous optical flow is insuffi-
cient to determine the magnitude of the camera’s instantaneous translational velocity.

The aim of this paper is to show that if a point in the static scene is tracked over a
period of time as part of time-varying optical flow and if the camera is calibrated in a
certain weak sense, then successive translational speeds of the camera evolve in a way
that is uniquely determined by the camera’s initial translational speed. A closed-form
solution is presented in the continuous realm, and its discrete analogue is experimentally
validated.

2 Camera and Image Settings

Consider a full-perspective, pinhole camera undergoing smooth motion in a stationary
world. Associate with the camera a 3D coordinate frame such that:

– the frame’s origin coincides with the camera’s optical centre C,
– two basis vectors span the focal plane,
– the other basis vector coincides with the optical axis.

Let v = [v1, v2, v3]T and ω = [ω1, ω2, ω3]T specify the camera’s instantaneous trans-
lational velocity and instantaneous angular velocity with respect to the camera frame.

B. Jähne et al. (Eds.): IWCM 2004, LNCS 3417, pp. 190–197, 2007.
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Let P be a static point in space. Suppose that the vector connecting C with P has the
coordinates x = [x1, x2, x3]T with respect to the camera frame. As the camera moves,
the position of P relative to the camera frame will change and will be recorded in the
function t �→ x(t). The evolution of the relative position is governed by the equation

ẋ + ω̂x + v = 0, (1)

where ω̂ is defined as

ω̂ =

⎡

⎣
0 −ω3 ω2
ω3 0 −ω1

−ω2 ω1 0

⎤

⎦

(cf. [1]). Let f be the focal length of the camera. Let p = [p1, p2, p3]T be the vector
of the coordinates of the perspective projection of P , through C, onto the image plane
{x ∈ R

3 : x3 = −f}, relative to the camera frame. Then

p = −f
x

x3
. (2)

To account for the geometry of the image, we introduce a separate, 2D coordinate
frame in the image plane, with two basis vectors aligned with rows and columns of
pixels, and with the origin located in one of the four corners of the rectangular image
boundary. In the case of rectangular image pixels, it is natural to assume that each of
the image frame basis vectors is proportional to one of the two vectors of the camera
frame spanning the focal plane. The corresponding proportionality coefficients s1 and
s2 characterise the pixel sizes in the basis directions, expressed in length units of the
camera frame. If an image point has coordinates p = [p1, p2, −f ]T and [m1, m2]T

relative to the camera and image frames, respectively, and if m = [m1, m2, 1]T , then

p = Am, (3)

where A is a 3×3 invertible matrix called the intrinsic-parameter matrix. With [i1, i2]T

the coordinates of the principal point (at which the optical axis intersects the image
plane) in the image frame, A takes the form

A =

⎡

⎣
s1 0 −s1i1
0 s2 −s1i2
0 0 −f

⎤

⎦.

In particular, if pixels are square with unit length, then A is given by

A =

⎡

⎣
1 0 −i1
0 1 −i2
0 0 −f

⎤

⎦. (4)

When pixels are non-rectangular, eq. (3) still applies but A takes a more complicated
form accommodating an extra parameter that encodes shear in the camera axes (see [2,
Section 3]).

With time t varying, the function t �→ p(t) describes the changing position of the
image of P in the camera frame, and the function t �→ ṗ(t) records the rate of change.
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Likewise, the function t �→ m(t) describes the changing position of the image of P in
the image frame, and the function t �→ ṁ(t) records the corresponding rate of change.

For a given time instant t, any set of length 6 flow vectors [m(t)T , ṁ(t)T ]T —each
vector corresponding to a point P from a set P of stationary points in the scene—is
termed an instantaneous true image velocity field. Similarly, for a given time interval
[a, b], any set of trajectories of the form t �→ [m(t)T , ṁ(t)T ]T with t ∈ [a, b]—each
trajectory corresponding to a point P from a set P of stationary points in the scene—is
called a time-varying true image velocity field. As is customary, we shall identify an
image velocity field with an appropriate observed image velocity field or optical flow
field (see [3, Chapter 12]).

The terms “instantaneous optical flow field” and “time-varying flow field” are em-
ployed even if the underlying set P contains a small number of elements. In particular,
P can be reduced to a single point.

The velocities v and ω are examples of so-called extrinsic parameters of the camera.
Another example of an extrinsic parameter is the projective form π(v) of v, defined as
the composite ratio

π(v) = (v1 : v2 : v3)

provided v �= 0. As is clear, π(v) captures the direction of v.
A camera for which the intrinsic parameters (encoded in A) and the extrinsic pa-

rameters v and ω are known will be referred to as strongly calibrated. A camera for
which the intrinsic parameters and the extrinsic parameters π(v) and ω are known will
be termed weakly calibrated. Strong calibration is typically performed using equipment
external to the camera. In contrast, the process of self-calibration is carried out using
purely image-based information and results in weak calibration (cf. [1, 4, 5]).

Assuming that v �= 0, the focus of expansion (FOE), or instantaneous epipole, of
the image is the image point whose coordinate representation p in the camera frame
is a multiple of v—see [6, Subsection 12.3.1 C] for a discussion of certain subtleties
involved in this definition. A moment’s reflection reveals that an image point p is not
the FOE if and only if

v̂p �= 0. (5)

3 Determining Relative Translational Speed

3.1 Theoretical Result

In reconstructing a scene from instantaneous optical flow seen by a weakly calibrated
camera, the magnitude ‖v‖ of the translational velocity determines the scale of the
reconstruction; here, of course, ‖ · ‖ denotes the Euclidean length of 3-vectors. It is
not possible, however, to recover this velocity magnitude, or translational speed, from
image-based information and a symbolic value must be chosen to set the reconstruc-
tion scale. The fact that any positive value may be selected reflects the inherent scale
indeterminacy of the projective interpretation of optical flow [1].

Suppose that a time-varying optical flow field is given over a period of time [a, b]. It is
a priori conceivable that the corresponding scale factor may change in an uncontrollable
way from one time instant to another—see comments in [7, Section 9]. However, as we
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show below, this indeterminacy can be significantly reduced if a single point in the
static scene is tracked over the entire period [a, b]. A single trajectory in a time-varying
optical flow field suffices to determine the relative translational speed ‖v(t)‖/‖v(a)‖
for all t ∈ [a, b], with the consequence that the speed ‖v(t)‖ is uniquely determined for
each t ∈ [a, b] once the initial speed ‖v(a)‖ is fixed.

The precise formulation of our result is as follows:

Theorem. Assume that a weakly calibrated camera moves smoothly so that v(t) �= 0
for each t ∈ [a, b]. Suppose that, for each t ∈ [a, b], a trajectory t �→ [m(t)T , ṁ(t)T ]T

represents a moving image of a point in the static scene. Suppose, moreover, that,
for each t ∈ [a, b], m(t) is not the FOE. Then the relative translational speed
‖v(t)‖/‖v(a)‖ is uniquely determined for all t ∈ [a, b]. More specifically, there ex-
ists a function g : [a, b] → R such that, for each t ∈ [a, b], g(t) is explicitly expressible
in terms of A(t), Ȧ(t), π(v(t)), ω(t), m(t) and ṁ(t), and such that

‖v(t)‖
‖v(a)‖ = exp

(∫ t

a

g(u) du

)
. (6)

Note. The exact form of g will be given in the course of the proof.

Proof. Given t ∈ [a, b], we first find the value of p(t) by applying (3) to m(t). We next
use the equation

ṗ = Ȧm + Aṁ,

obtained by differentiating both sides of (3), to determine ṗ(t) from m(t) and ṁ(t).
Note that (2) can be equivalently rewritten as

x = −x3p

f
. (7)

Differentiating both sides of the latter equation, we obtain

ẋ =
x3ḟ − ẋ3f

f2 p − x3

f
ṗ. (8)

Substituting (7) and (8) into (1), we find that

x3
(
ḟp − f(ṗ + ω̂p)

)
− ẋ3fp + f2v = 0. (9)

Omitting in notation the dependence upon t, define

k = v̂(ḟp − f(ṗ + ω̂p)),
l = f v̂p.

Applying v̂ to both sides of (9) and taking into account that v̂v = 0, we see that

x3k − ẋ3l = 0.

Hence
ẋ3

x3
=

lT k

‖l‖2 . (10)
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For the last formula to be meaningful the denominators on both sides of (10) have to
be non-zero. Without loss of generality we may always assume that x3 > 0, as this
assumption reflects the fact that the scene is in front of the camera. On the other hand,
since p is not the FOE, it follows from (5) that l �= 0.

If v is multiplied by a non-zero scalar factor, then both k and l are multiplied by the
same factor, and consequently lT k/‖l‖2 does not change. As a result, lT k/‖l‖2 can be
regarded as a function of π(v)—not just v—and ω, f , ḟ , p, ṗ, and treated as known.
Define

q =
1
f2

(
lT k

‖l‖2 fp − ḟp + f(ṗ + ω̂p)
)
.

Clearly, being a composite of known entities, q can be regarded as known. In view of
(9) and (10), we have

v = x3q

and further
‖v‖ = |x3| ‖q‖. (11)

To simplify the notation, let v = ‖v‖ and q = ‖q‖. Taking the logarithmic derivative
of both sides of (11) and next using (10), we deduce that

v̇

v
=

ẋ3

x3
+

q̇

q
=

lT k

‖l‖2 +
q̇

q
. (12)

Let

g =
lT k

‖l‖2 +
q̇

q
.

Since lT k/‖l‖2 is known and since q and q̇ are known too (both functions being deriv-
able from the known function q), one can regard g as known. In view of (12), we finally
find that

v(t)
v(a)

= exp
(∫ t

a

g(u) du

)
,

which, of course, is the desired formula (6) for the relative translational speed. ��

3.2 Computational Aspects

The result given above is applicable only in the case where the camera is weakly cal-
ibrated. There are many means by which this information may be recovered, and the
method presented here will only be of interest in situations when this form of calibra-
tion information is available.

One method by which the required weak calibration of a moving camera may be
achieved is as follows. If we assume that A takes the form given in (4) (so that pixels
are square and have unit length) with the known principal point [i1, i2]T , then the only
unknown intrinsic parameters are the focal length and its derivative. These parameters,
along with the required instantaneous velocities, can be estimated on the basis of an
instantaneous optical flow field comprising at least eight elements [mT

i , ṁT
i ]T (i ≥ 8).

A first step is the estimation, up to a common scalar factor, of two matrices, a symmetric
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matrix C and an antisymmetric matrix W , entering the differential epipolar equation
for uncalibrated optical flow

mT Wṁ + mT Cm = 0

and the cubic constraint1

wT Cw = 0,

with w such that W = ŵ. Once the composite ratio

π(C, W ) = (c11 : c12 : c13 : c22 : c23 : c33 : w1 : w2 : w3)

is estimated, recovering f and ḟ proceeds by exploiting explicit formulae that involve
π(C, W ) [1]. Estimation of π(C, W ) can be done by applying one of a host of meth-
ods available [8].

To show how this approach works in practice, suppose that a set of at least eight
points is tracked simultaneously over time. For each i = 1, . . . , I with I ≥ 8,
let {mi(tj)}n

j=1 be a sequence of images of the ith point in the scene, and let
{ṁi(tj)}n−1

j=1 , ṁi(tj) = (tj+1 − tj)−1(mi(tj+1) − mi(tj)), be the sequence of
corresponding image velocities. At each time instant tj with j < n, the camera
is first weakly calibrated based on the set {[mi(tj)T , ṁi(tj)T ]T }N

i=1 of all current
flow vectors. Then, for each i, a value gi(tj) is evolved based on the ith flow vec-
tor [mi(tj)T , ṁi(tj)T ]T . In absence of information on the reliability of the gi(tj), a
simple average ḡ(tj) = I−1 ∑I

i=1 gi(tj) is next formed. Finally, the current relative
translational velocity ‖v(tj)‖/‖v(t1)‖ is updated to

‖v(tj+1)‖
‖v(t1)‖

=
‖v(tj)‖
‖v(t1)‖

exp[(ḡ(tj))(tj+1 − tj)].

4 Experimental Evaluation

In order to assess the accuracy of the method presented above synthetic testing was
carried out. The tests involved generating the equivalent of 5 seconds of video from
a moving camera and comparing the estimated and true magnitudes of the instanta-
neous translational velocity. The 5 second duration was selected as a reasonable period
over which it might be expected that all tracked points would remain visible within the
boundaries of the image. The video has been generated at the equivalent of 25 frames
per second, and the simulated motion of the camera is of the type that might be expected
of a real camera.

An optical flow field of 100 elements was generated, and Gaussian noise (mean 0,
standard deviation 0.5 pixels) added to both the location and velocity components of
each flow vector. Given that optical flow is usually calculated across the majority of the
image plane, it seems reasonable to assume that at least 100 flow vectors are available
for velocity magnitude estimation. It is important to note also that in testing the method
noise has not been added to the calibration information. The weak calibration used is

1 Note that wT Cw is a cubic polynomial in the entries of C and W .
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Fig. 1. Speed estimates for 5 seconds of video

thus “true”. This reflects the fact that we present here a method of estimating the veloc-
ity magnitude, not a method of weak calibration. Figure 1 shows the velocity magnitude
estimated using all of the available 25 frames per second, and the magnitude estimated
using only 2.5 frames per second. The result based on the lower frame rate is intended
to show the degradation in performance in the case where a full weak calibration is not
available for each frame of the video. The velocity magnitudes are represented in units
of pixels per frame of video (at 25 frames per second).

The graph shows that, despite small variations in the estimated magnitude, on av-
erage the method performs very well. The maximum speed error in the 25 frames per
second estimate is 0.93%. The decreased frame rate of the 2.5 frames per second test
causes a decrease in accuracy as would be expected. The maximum error in the 2.5
frames per second estimate is 1.5%.

5 Conclusion

A novel method was presented for incremental recovery of the magnitude of a cam-
era’s translational velocity from time-varying optical flow, relative to an arbitrarily fixed
starting value. Results of preliminary synthetic testing confirmed the validity of the ap-
proach. Future work will explore how the method may be improved via techniques
such as Kalman-like smoothing, use of multiple optical-flow trajectories, and reduction
of error accumulation effects.
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Abstract. We propose a robust approach to the problem of ego-motion estimation
using a mobile stereo platform. Stereo is computed for every frame obtaining 3D
points of the environment. In addition optical flow establishes correspondences
between points in successive frames. A smoothness motion constraint is applied
in order to detect flow vectors which are inconsistent with the current ego-motion.
The optimal rotation and translation between the resulting clouds of static points
is then computed using a closed form solution based on unit quaternions, pro-
viding the motion between the current and previous frame. Stabilization and a
better estimation are achieved computing the observed motion between the cur-
rent frame and many frames in the past in a multi-frame fashion. The integration
of successive movements allows the reconstruction of the travelled path. Exper-
imental results with sequences covering more than 1.5 kilometers of travelled
distance are presented and compared with GPS and odometry.

1 Introduction

The extraction of the observed motion of a camera has been an active area of re-
search over the last decades. Ego-motion computation is motivated by applications like
autonomous navigation, self-localization, obstacle-detection and scene reconstruction.
Ego-motion is also needed by other applications which require the relative orientation
of the cameras with respect to a reference frame. Our interest lies in the computation
of the six degrees of freedom of the movement of a vehicle in typical traffic situations.
For that purpose, a binocular platform has been mounted in the vehicle, which provides
the main input to the ego-motion algorithm. Our method is a passive one, in the sense
that no additional information is required, i.e. ego-motion is computed only analyzing
the images provided by the cameras and the required calibration parameters.

Many approaches have been proposed with monocular and multi-ocular platforms.
When using more than one camera ( [1] [2] [3] [4] [5] [6] [7] [8]) the scene structure
can be directly recovered through triangulation providing 3D points of the environment.
Monocular approaches, instead, do not compute the scene structure ( [9] [10] [11]) or
they do it at the cost of integrating measurements of the image points (and possible also
of other sensors) over a long time, until a reliable structure is obtained ( [5] [12] [13]).
Therefore multi-ocular approaches perform better in most of the cases.

Computing ego-motion from an image sequence means obtaining the camera move-
ment with respect to a static scene, i.e. the motion is relative to something which can be

B. Jähne et al. (Eds.): IWCM 2004, LNCS 3417, pp. 198–208, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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considered static. The scenarios we are interested in are typical traffic situations. Such
an environment presents many participants with self-motion which can make our esti-
mation fail if they are considered static. Also the incorrect computation of a 3D position
or the incorrect tracking of features can introduce errors in the computation. Therefore
an effective rejection rule must be applied in order to identify which image points are
not showing a coherent movement. We propose a very effective constraint which we
call smoothness motion constraint (SMC).

Mallet et al [4] present an approach very similar to the one presented here, where
they focus on the reduction of errors produced by the stereo and tracking algorithms.
The reduction of errors is of course important to improve accuracy, but a robust method
should still be able to work well with noisy measurements, since errors are unavoidable.
The computation of ego-motion is also normally computed considering only the current
and previous state, which provides the current relative motion. The complete motion is
then obtained concatenating the individual estimations. This may lead to poor results
because of destabilization. A more stable estimation can be achieved if considering not
only the last two frames, but also many frames back in the time (multi-frame estimation).

In the following section we propose a robust method for the computation of ego-
motion and present the first experimental results with two sequences, summing both
sequences together a travelled distance of more than 1.5 kilometers.

1.1 Organization of the Paper

In section two we present a block diagram of the method and describe shortly the stereo
and tracking algorithm. Section three summarizes the least-square approach used to
compute the 6 degrees of freedom of motion. Section four introduces the smoothness
motion constraint. In section five we describe the multi-frame motion estimation pro-
cedure. Experimental results are shown in section six. Conclusions comprise the last
section.

2 A General Description of the Approach

Figure 1 shows a block diagram of the method. The inputs are given by the left and
right images from a stereo imaging system. We assume that the calibration parameters
are known and that the provided images are rectified. Optical flow is computed using the
current and previous left image. Disparities between the left and right image are only
computed for those image positions where the flow algorithm was successful. Triangu-
lation is performed and a list with the tracked points for the current frame is generated.
The list is added to a table where the last m lists of tracked 3D points are stored. This
will allow the integration of a multi-frame motion estimation, i.e. motion is not only
obtained based on the last observed movement, but also between m frames in the past
and the current frame.

The six motion parameters (three components for translation and three for rotation)
are then computed as the optimal translation and rotation found between the current and
previous list of 3D points using a least squares closed-form solution based on rotation
quaternions as shown in the next section. In order to avoid the introduction of erro-
neous data in the least square computation, a smoothness motion constraint is applied,
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Fig. 1. Block Diagram of the Approach

rejecting all pairs of points which represent an incoherent movement with respect to the
current ego-motion (section 4). These two steps are repeated but using the list of tracked
points between the current frame and m frames in the past. The two motion hypotheses
are then interpolated obtaining our final ego-motion estimation, and updating the list of
motion steps (section 5). The whole process is then repeated for every new input data
stream.

The flow and stereo algorithms to be used are not constraint to a specific imple-
mentation. In fact, our approach was tested with different algorithms obtaining almost
identical results. Nevertheless, we describe shortly the stereo and optical flow algo-
rithms used in the experimental results of section 6. The stereo algorithm works based
on a coarse-to-fine scheme in which a gaussian pyramid for left and right images is
constructed with a sampling factor of two. The search for the best disparity is only
performed at the top level of the pyramid and then a translation of the disparity map is
made to the next level, where a correction is done within an interval ±1 of the calculated
disparity. We use the sum of squared differences as the default correlation function. Dif-
ferent filters and constraints are applied between pyramid translations. The zero-mean
normalized cross-correlation (ZNCC) is used in order to check the confidence of the
match. A match is considered reliable if the ZNCC coefficient is larger than a predefined
threshold. Dynamic programming can also be applied between pyramid translations in
order to eliminate matches which invalidate the ordering constraint. Finally a sub-pixel
disparity map is computed as the last step in the pyramid. This is achieved by fitting
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a second degree curve to the best match and its neighbors and finding the sub-pixel
disparity where the slope is zero in the quadratic function.

The tracking algorithm we use for the computation of optical flow is the Kanade /
Lucas / Tomasi (KLT) tracker. An extended description of the algorithm can be found
in [12] and therefore we skip the description of this method here. Our experience with
different tracker algorithms has shown that the KLT tracker can track feature points
with a small error over tens of frames.

3 Obtaining the Relative Orientation

Let P = �pi be the set of static points of the previous time and X = �xi the sets of static
points observed at the current time, where �pi ↔ �xi, i.e. �xi is the transformed version at
time tn of the point �pi at time tn−1. If the measurement of point positions were free of
noise, only three non-collinear points of each set would be enough to obtain the exact
translation and rotation between both sets, which at the same time corresponds to the
inverse movement of the camera. Therefore the optimal rotation and translation between
two noisy sets must be found minimizing some error function. We use the closed form
solution based on quaternions presented by Horn [14]. The main steps of the closed
form are presented here. For more details see the above reference.

The error function to be minimized can be expressed as the sum of the weighted
residual errors between the rotated and translated data set P with data set X , i.e.:

e =
n∑

i=1

wi‖ei‖2 =
n∑

i=1

wi‖�pi − R(�q)�xi − �t‖2 (1)

where n is the amount of points in the sets, R is a rotation matrix obtained as a function
of the unit rotation quaternion �q, �t is a translation vector and wi are individual weights
representing the expected error in the measurement of the points.

We compute first the cross-covariance matrix of both sets:

ΣXP =

n∑

i=1
[wi(�xi − �uX)(�pi − �uP )t]

n∑

i=1
wi

=

n∑

i=1
[wi�xi�p

t
i]

n∑

i=1
wi

− �uX�ut
P

where

�uX =

n∑

i=1
wi�xi

n∑

i=1
wi

�uP =

n∑

i=1
wi�pi

n∑

i=1
wi
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correspond to the weighted centroids of each set. Through the definition of the anti-
symmetric matrix:

A = (ΣXP − Σt
XP )

and a vector consisting of the elements of A:

Δ = [ A2,3 A3,1 A1,2 ]

the optimal rotation quaternion �q is found as the unit eigenvector corresponding to the
maximum eigenvalue of the matrix:

Q(ΣXP ) =
[
tr(ΣXP ) Δt

Δ ΣXP + Σt
XP − tr(ΣXP )I3

]

where I3 is the 3 × 3 identity matrix and tr(M) expresses the trace of a matrix M .
The rotation matrix R(�q) of equation 1 is obtained from the lower right hand 3 × 3
sub-matrix of:

Q
T
Q =

⎡

⎢
⎢
⎣

�q · �q 0 0 0
0 (q2

0 + q2
x − q2

y − q2
z) 2(qxqy − q0qz) 2(qxqz + q0qy)

0 2(qyqx + q0qz) (q2
0 − q2

x + q2
y − q2

z) 2(qyqz − q0qx)
0 2(qzqx + q0qy) 2(qzqy − q0qx) (q2

0 − q2
x − q2

y + q2
z)

⎤

⎥
⎥
⎦

where Q
T

and Q are the 4 × 4 orthogonal matrices corresponding to the quaternion
�q (see [14]). The translation can now be obtained as the difference of the rotated and
translated centroid of the current set with the centroid of the previous set:

�t = �uP − R(�q)�uX .

3.1 Motion Representation with Matrices

The computed motion of the camera at time tn (i.e. the motion observed from frame
n−1 to frame n, which we call single step estimation) is represented by the matrix M ′

n

where:

M ′
n =

[
R(�qn) �tn

0 1

]

The complete motion of the camera since initialization can be obtained as the prod-
ucts of individual motion matrices:

Mn =
n∏

i=1

M ′
i

Being the initial position of the camera �p0 =
[
x0 y0 z0 1

]
the current ego-position

�pn =
[
xn yn zn 1

]
can be obtained by multiplying the complete motion matrix with
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p0, i.e. �pn = Mn�p0. A sub-chain of movement from time tj to time tk can also be
obtained as:

Mj,k = M−1
j Mk =

k∏

i=j+1

M ′
i (2)

Figure 2 shows an example of motion integration with matrices. As it will be seen
in section 5, equation 2 will help in the integration of the motion produced between
two non-consecutive frames (multi-frame estimation) in order to stabilize the computed
ego-motion parameters.

0

1

2
3

4

∏
=

− ==

∏
=

=

Fig. 2. The integration of single-step estimations can be obtained by just multiplying the indi-
vidual motion matrices. Every circle denotes the state (position and orientation) of the camera
between time t0 and time t4. Lines indicate motion in 3D-space.

4 Smoothness Motion Constraint

Optical flow and/or stereo can deliver false information about 3D position or image
point correspondence between image frames, or some of the points can correspond to a
self-moving object. Typical traffic situations present many actors with self-motion such
as other vehicles and pedestrians. The situation where more than 50% of the image
area is composed of moving objects is not very unusual. A robust method should still
be able to give accurate results in front of such situations. If the frame rate is high
enough to obtain a smooth motion between consecutive frames, then the current motion
to be estimated should be similar to the immediate previous motion. Therefore, before
including the pair of points �pi and �xi into their corresponding data sets P and X we
evaluate if the vector �vi = −−→xipi indicates a coherent movement. Let us define �d =[
ẋmax ẏmax żmax 1

]
as the maximal accepted error of the position of 3D point with

respect to a predicted position. Based on our previous estimation of motion at time tn−1
we evaluate the movement coherence of the vector �vi as:

�ci = M ′
n−1�xi − �pi (3)

i.e., the error of the point position with respect to our prediction. If the absolute value
of any component of ci is larger than

�d′ =
Δtn

Δtn−1

�d (4)
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Fig. 3. Example of SMC. The images show the flow vectors before (left image) and after (right
image) the SMC.

where a Δtk corresponds to the time between time tk−1 and tk, then the pair of points
are discarded and not included in the data sets for the posterior computation of relative
orientation. Otherwise, we weight the pair of points as the ratio of change with respect
to the last motion:

wi = 1 − ‖�ci‖2

‖�d′‖2
(5)

which later is used as indicated in section 3. Equations (3) to (5) define the smoothness
motion constraint. In figure 3 an example of the effectiveness of the SMC is shown. The
left image shows all the flow vectors computed with the KLT tracker. The right image
shows only those vectors which were selected by the SMC. Comparing both images it
can be seen how the SMC has eliminated most of the incorrect vectors and has left only
those which provide the most reliable information.

5 Multi-frame Estimation

Single step estimation, i.e. the estimation of the motion parameters from the current and
previous frame is the standard case in most approaches. If we were able to compute the
motion also between non-consecutive frames, the estimation would be improved thanks
to the integration of more measurements. Also robustness is increased, since when one
of the estimations fail, the motion will be still provided by some of the others. Another
problem is the propagation of errors. An error produced in one step will propagate
superlinearly in the future ego-position estimations [7]. For example, if the yaw rate is
incorrectly estimated in one step, it is implausible that this will be corrected later. A
stabilization process is then also required.

We propose a simple approach in order to provide stabilization to the estimation
process. If we are able to track points in m frames, then we can also compute the mo-
tion produced between the current and the m previous frames. The estimation of motion
between frame m and current frame n (m < n − 1) follows exactly the same procedure
as explained above. Only when applying the SMC, a small change takes place, since the
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Fig. 4. Multi-frame approach for ego-motion estimation. The motion between times t3 and t4 is
obtained as the interpolation of two motion matrices.

Fig. 5. Aerial images of the tested routes for the sequence Curves (left image) and sequence Ring
(right image). The arrows indicates the start and end of the tested routes.

prediction of the position for m frames is not the same as for a single step. In other words,
the matrix M ′

n−1 of equation (3) is not valid any more. If the single step estimation matrix
M̃n for the current frame was already computed, then equation (3) becomes:

�ci = M−1
n−mMn−1M̃n�xi − �pi

i.e. the estimated motion between times tn−m and tn−1, updated with the current simple
step estimation of time tn. This allows the SMC to be even more precise, since the
uncertainty in the movement is now centered around an updated prediction, while for
the single step estimation, the uncertainty is centered around a position defined by the
last motion.

Once the camera motion matrix M̃m,n between times tn−m and tn is obtained, it
must be integrated with the single step estimation. This is performed by interpolation.
The interpolation of matrices makes sense if they are estimations of the same motion.
This is not the case since the single step motion matrix is referred as the motion be-
tween the last two frames and the multi-frame motion matrix as the motion between
m frames in the past to the current one. Therefore, the matrices to be interpolated
are M̃n and M−1

m,n−1M̃m,n (see figure 4). The corresponding rotation matrices are
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converted to quaternions in order to apply a spherical linear interpolation. The inter-
polated quaternion is converted to the final rotation matrix Rn. Translation vectors are
linearly interpolated, obtaining the new translation vector �tn. The factors of interpola-
tion are given by the weighted sum of quadratic deviations obtained when computing
the relative motion of equation 1.

6 Experimental Results

The method was tested with two sequences taken from a vehicle while driving in typical
traffic situations. Aerial views1 of the tested route of each sequence can be seen in
figure 5 where the arrows indicate the start and the end of the sequence. The frame rate
was selected to 10 frames per second. The baseline of the stereo camera is 0.35 meters
and the images have a standard VGA resolution (640 × 480 pixels). The velocity of
the vehicle varies between 18 and 55 km/h. The first sequence, which we call Curves,

Fig. 6. Results for the sequence Curves

1 Courtesy of the Municipality of Esslingen am Neckar. Source: www.esslingen.de.
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covers a travelled distance of around 900 meters, while the second sequence, called
Ring covers a distance of 650 meters.

The computed ego-position for the Curves sequence is shown in figure 6 (a). Com-
paring the curve with GPS information, one observes that the error in the ego-position
is relatively small. In fact, the estimation is better than using odometry, which overesti-
mates the travelled distance. This can be seen more clearly when comparing the velocity
estimations of figure 6 (b), which shows the computed velocity curves in time. Observe
how the curve of our approach fits very good to the one obtained with GPS while odom-
etry estimates the velocity too high. The estimation of the travelled distance for GPS
was 696.30 meters, for our approach 664.55 meters, and using odometry 715.99 me-
ters. The GPS distance was expected to be larger than the distance computed with our
approach, since the GPS position oscillates around the true position. In figures 6(c) is
shown the change in the vehicle orientation since initialization, where the curves corre-
sponding to odometry and ego-motion are smooth in comparison to the GPS estimation.
Finally, the yaw-rate estimation for odometry and ego-motion is shown in 6(d) where
almost a complete overlap of both curves is observed.

The ego-position estimations for the sequence Ring can be seen in figure 7 (a). Our
purpose here was to observe the behavior of each method when driving 360◦. The
ego-motion estimation could close the ring, while odometry failed to do so. The dis-
tance between start position and end position for odometry at the point where the ring
should have been closed is about 37.63 meters, for GPS is 1.73 meters and using our
method 16.97 meters. The yaw rate estimation for odometry and ego-motion is shown in
figure 7 (b), where once again both curves overlap most of the time.

Fig. 7. Results for the sequence Ring

7 Conclusion

We have presented an approach for the computation of ego-motion which is very robust
against moving objects and stereo/flow failures. The 6 degrees of freedom of motion
can be accurately extracted with our method by computing the optimal rotation and
translation between the clouds of 3D points of multiple frames. Robustness is given by
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an effective constraint which eliminates all flow vectors which are inconsistent with the
current ego-motion. Motion can also be better estimated if the motion is computed not
only based on the current and last frame, but also between the current frame and many
frames in the past, providing motion stability.

The method has demonstrated to be better than odometry and yields more accurate
results than GPS for short travelled distances since the position obtained with GPS are
rough estimations around the true position.
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Abstract. A fast and robust algorithm for the detection of independently moving
objects by a moving observer by means of investigating optical flow fields is
presented. The detection method for independent motion relies on knowledge
about the camera motion. Even though inertial sensors provide information about
the camera motion, the sensor data does not always satisfy the requirements of the
proposed detection method. The first part of this paper therefore deals with the
enhancement of earlier work [29] by ego-motion refinement. A linearization of
the ego-motion estimation problem is presented. Further on a robust enhancement
to this approach is given.

Since the measurement of optical flow is a computationally expensive opera-
tion, it is necessary to restrict the number of flow measurements. The proposed al-
gorithm uses two different ways to determine the positions, where optical flow is
calculated. A fraction of the positions is determined by using a sequential Monte
Carlo sampling resampling algorithm, while the remaining fraction of the posi-
tions is determined by using a random variable, which is distributed according to
an initialization distribution. This approach results in a fixed number of optical
flow calculations leading to a robust real time detection of independently moving
objects on standard consumer PCs.1

1 Introduction

The detection of independently moving objects by an also moving observer is a vital
ability for any animal. The early detection of an enemy while moving through visual
clutter can be a matter of life and death. Also for modern humans it is useful, e.g. for
collision prevention in traffic. Using the human head as an inspiration, a lightweight
monocular camera mounted on a pan-tilt-unit (PTU) is chosen to investigate the en-
vironment in this application. The analysis of optical flow fields gathered from this
camera system is a cheap and straight forward approach avoiding heavy and sensitive
stereo rigs.

The method for the detection of independent motion used in this work relies on
the knowledge of the camera motion. Even though inertial sensors provide information
about this motion, the accuracy of these sensors does not satisfy the requirements of
the used detection methods. To overcome this handicap, a novel algorithm for the re-
finement of the essential matrix is developed and compared against other approaches.

1 This work was supported by BMBF Grant No. 1959156C.

B. Jähne et al. (Eds.): IWCM 2004, LNCS 3417, pp. 209–222, 2007.
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Extensive studies about essential matrix estimation [7, 9, 18] and the closely related
problem of fundamental matrix computation [8, 9, 15, 16, 26, 27, 32] exist. Further on
there is a vast variety of literature about ego-motion estimation [4, 23, 24]. Two other
papers from this workshop also deal with ego-motion refinement: Badino [1] fuses data
from optical flow algorithm with depth data gathered from a mobile stereo platform for
ego-motion estimation and Hengel [10] estimates the relative translational speed from
dense optical flow fields.

Since determining highly accurate optical flow with subpixel precision is a com-
putationally expensive operation, restrictions on the maximum number of optical flow
computations have to be made in real time environments. The approach chosen in this
work is inspired by [12] and determines the sample positions (i.e. points where optical
flow will be calculated) partly by using a vector of random variables, which are distrib-
uted according to an initialization distribution function (IDF), and partly by propagating
samples from the last time step using a sequential Monte Carle sampling resampling
approach.

While a wide range of literature on the application of particle filters to tracking tasks
[12,13,20] and lately on improvements on the particle filter to overcome the degeneracy
problem [11, 14, 17, 30] exist, only little work has been done in the field of using such
probabilistic techniques for the investigation and interpretation of optical flow fields:
In [3] motion discontinuities are tracked using optical flow and the CONDENSATION
algorithm and in 2002 Zelek [31] used a particle filter to predict and therefore speedup
a correlation based optical flow algorithm.

In the following sections, the basic concept used for the detection of independent
motion is explained first. Afterwards an algorithm for the estimation of the necessary
camera motion parameters is presented. A sequential Monte Carle sampling resampling
approach to speedup and stabilize the detection of independent motion is described next.
Finally experiments on synthetic data are shown.

2 Detection of Independently Moving Objects

The basic concepts used for the detection of independently moving objects by a moving
observer through investigation of the optical flow are introduced in this section.

Computation of the Optical Flow: A large number of algorithms for the computation
of optical flow exist [2]. Any of these algorithms calculating the full 2D optical flow
can be used for the proposed algorithm. Algorithms calculating the normal flow only
(i.e. the flow component parallel to the image gradient) are, however, inappropriate. The
optical flow in this work is calculated using an iterative gradient descend algorithm [19],
applied to subsequent levels of an image pyramid.

Detection of Independent Motion: Each optical flow field resulting from a relative
motion between the camera and a static object consists of a rotational part and a trans-
lational part (Fig. 1). The rotational part is independent of the scene geometry and
can be computed from the camera rotation. Subtraction of the rotational flow field from
the overall flow field results in the translational flow field, where all flow vectors point
away from the focus of expansion (FOE), which can be calculated from the camera
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(a) (b) (c) (d)

Fig. 1. Theoretical flow fields for a simple scene. The 3D scene is shown at (a). The scene consists
of 3 blocks. The camera, displayed as small pyramids, translates towards the blocks while rotating
around the y axis. The flow field F as induced by this movement is shown in (b). Its rotational
component FR (c) and translational component FT (d) with the Focus of Expansion (FOE) are
shown on the right.

motion. With known camera motion, only the direction of the translational part of the
optical flow field can be predicted. The angle between the predicted direction and the
(also rotation corrected) flow calculated from the two images serves as a measure for
independent motion [28] (Fig. 5). In this context, independent motion means motion
inconsistent with the camera motion. This detection method requires the exact knowl-
edge of the camera motion. In our approach, the camera motion (relative to the static
scene) can be derived from rotation sensor and speed sensor data of the car, or it can
alternatively be measured directly from the static scene [21]. A robust approach for the
estimation of the necessary camera motion parameters is presented in the next section.

3 Essential Matrix Refinement from Image Point Correspondences

In this section a new iterative linearized method for the estimation of the essential matrix
is proposed. First the basic concepts for the description of image relations, the funda-
mental matrix and the essential matrix, are introduced. After a brief review of 8-point
and the Levenberg-Marquard (LM) algorithm, the new iterative linearized approach is
derived in detail and compared against the two previous mentioned approaches. In the
last part, an enhancement to the new approach is suggested to make it robust against
gross errors in the image point correspondences. Large errors in image point correspon-
dences may result from either measurement errors or from the presence of independent
motion in the images.

The fundamental matrix. F describes the relationship between two views of a static
scene. Any point p in the first view is constrained to lie on the epipolar line l in the
second view. The fundamental matrix F relates x to l via l = Fx. The well known
fundamental constraint relates two corresponding image points p′ and p through:

p′T Fp = 0 (1)

Although the matrix F has 9 entries it has only 7 degrees of freedom (dof) [9] 2.

2 F is scale independent and has rank 2.
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The essential matrix. E describes the relationship between two views of a static scene
if the calibration matrix K

K =

⎛

⎝
f s cx

0 af cy

0 0 1

⎞

⎠ (2)

consisting of the focal length f , the aspect ratio a, the skew s and the principal point
(cx, cy)T is known. The fundamental constraint (eq. 1) then holds on normalized image
coordinates p = K−1p:

p′T Ep = 0 (3)

In contrast to F , the essential matrix E has only 5 dof (3 for the rotation and 2 for the
translation direction between the two views). If the epipole and the rotation are known,
the essential matrix can be computed as follows:

E = [e]× · R =

⎛

⎝
0 −1 ey

1 0 −ex

−ey ex 0

⎞

⎠ · R (4)

where (ex, ey, 1)T is the epipole in homogenous coordinates, 3 [e]× denotes the 3 by 3
skew symmetric matrix with entries from the vector e and R is the rotation matrix. For
a thorough discussion on multiple view geometry and projective geometry see [9].

3.1 Comparison of Different Approaches

8 Point: In this approach (which is described in detail in [9]), the 8 point algorithm is
used to estimate a first approximation of the essential matrix E. A linear system A in the
9 unknown entries of the essential matrix f = (E1,1, E1,2, . . . , E3,3)T is constructed
using homogenized, normalized image point correspondences pn = (xn, yn, 1)T and
p′n = (x′

n, y′
n, 1)T in the fundamental constraint (eq. 1):

A · f = 0 (5)

where each row An of A has the form

An = (x′
nxn, x′

nyn, x′
n, y′

nxn, y′
nyn, y′

n, xn, yn, 1) (6)

After retrieving the least squares solution (subject to ||f ||2 = 1) of the system (eq. 5),
the SVD of the resulting matrix E′ = UDV T is used to enforce the 5 dof constraint
by setting the smallest singular value to zero and the remaining two singular values to
their mean 4. Updating the diagonal matrix D with the new singular values leads to D′.
Recomputation of the essential matrix with the updated D′ leads to the closest essential
matrix E′′ = UD′V T to E in Frobenius norm. The epipole e and rotation matrix R can
be extracted from E′′ by using the SVD of E′′ = UD′V T :

[e]× = UZUT and R = UWV T or UWT V T (7)

3 Homogenous coordinates are members of a projective space P (in this case P
2). The projective

space P
2 is an extension of the Euclidean space R

2.
4 From the three singular values of an essential matrix, two are equal and the remaining is zero.
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with the matrices

W =

⎛

⎝
0 −1 0
1 0 0
0 0 1

⎞

⎠ and Z =

⎛

⎝
0 1 0

−1 0 0
0 0 0

⎞

⎠ (8)

Levenberg-Marquard: In this approach the essential matrix is parameterized using
the direction of translation (the angles of the spherical representation of the vector be-
tween the two camera centers) and an axis and angle representation of the rotation
matrix R. In order to restrict the number of parameters to 5 (the dof of the essential
matrix), the angle is encoded using the length of the axis. Two different error functions
are investigated here:

– A: The geometric error function uses the sums of the distances between the image
point and the corresponding epipolar line as error function.

– B: The algebraic error function uses the residuum resulting from the fundamental
constraint (eq. 3) directly.

A starting approximation to the essential matrix needs to be known in both versions A
and B of this approach.

Iterative Linearized: The true epipole e and the true rotation R are assumed to be
known up to small errors Δe and ΔR:

e = ec + Δe R = ΔR · Rc (9)

The starting approximations ec and Rc are calculated using the inertial sensors of the car
(speed, yawrate, steering angle, pan angle and tilt angle) [28]. If only an approximate
essential matrix is known, eq. 7 can be used to extract ec and Rc from the essential
matrix. In order to solve the problem with low computational cost, ΔR is approximated
by a Taylor series expansion up to the linear term:

ΔR ≈ (I + [r]×) =

⎛

⎝
1 0 0
0 1 0
0 0 1

⎞

⎠ +

⎛

⎝
0 −rz ry

rz 0 −rx

−ry rx 0

⎞

⎠ =

⎛

⎝
1 −rz ry

rz 1 −rx

−ry rx 1

⎞

⎠ (10)

where r = (rx, ry, rz)T is a vector of the Euler rotation angles around the x, y and
z axis resp., I is the identity matrix and [r]× again describes a skew symmetric 3 × 3
matrix with entries from r. The linearization is only valid for small angles rν and small
epipole error Δe = (Δex, Δey, 0)T :

rx, ry, rz � 1 Δex, Δey � 1 (11)

Using eq. 9 and eq. 10 in fundamental constraint (eq. 3) results in:

eyp
′
x,r − exp′y,r + expy − eypx − exrx − p′x,rpy + p′y,rpx + p′x,rrx+

pxΔexrz + pyΔeyrz − exp′y,rpyrx + eyp
′
x,rpyrx + p′y,rpxΔexry+

Δey(p′x,r − px + p′x,rpyrx) + Δeyry(−p′x,rpx − 1)+

ry(p′y,r − ey + exp′y,rpx − eyp
′
x,rpx) + rz(expx + eypy − p′x,rpx − p′y,rpy)+

Δex(py − p′y,r − rx − p′y,rpyrx) = 0 (12)
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with the point correspondence between p = (px, py, 1)T and the rotated point p′r =
Rc ∗ p′ = (p′x,r, p

′
y,r, 1)T .

Neglecting the terms with quadratic small values (e.g. rzΔex) and using at least 5
point correspondences leads to a somehow simpler linear equation system in Δe and r:

A ·

⎛

⎜
⎜⎜
⎜
⎝

Δex

Δey

rx

ry

rz

⎞

⎟
⎟⎟
⎟
⎠

= B (13)

with A = (A1, A2, . . .)T consisting of the rows Ai:

AT
i =

⎛

⎜
⎜
⎜
⎜
⎝

py − p′y,r

p′x,r − px

p′x,r − ex − exp′y,rpy + eyp
′
x,rpy

p′y,r − ey + exp′y,rpx − eyp
′
x,rpx

expx + eypy − p′x,rpx − p′y,rpy

⎞

⎟
⎟
⎟
⎟
⎠

(14)

and

B =

(
exp′y,r − eyp

′
x,r − expy + eypx + p′x,rpy − p′y,rpx

...

)

(15)

Solving this linear system iteratively and updating the epipole and the rotation matrix

ec,k+1 = (Δex,k, Δey,k, 0) + ec,k with ec,0 = ec (16)

Rc,k+1 = R(rk) · Rc,k with Rc,0 = Rc (17)

from iteration k to k + 1 quickly converges against the true solution. Hereby R(rk)
denotes the rotation matrix as composed from the Euler angles contained in the vector
rk. In order to demonstrate the convergence of the algorithm empirically, the mean
absolute rotation error Δrabs and the mean absolute epipole error δeabs are used:

Δrabs =
1
N

N∑

n=1

||r(Rc, k, n) − rt,n||2 δeabs =
1
N

N∑

n=1

||ec,k,n − et,n||2 (18)

where rt,n is the vector consisting of the Euler angles describing the true rotation of the
nth run and r(Rc, k, n) is the vector consisting of the Euler angles extracted from the
rotation matrix Rc,k of the nth run.

Figure 2 shows the mean absolute rotation error Δrabs and the mean absolute epipole
error δeabs over 100 runs on simulated point correspondences. The experiment has been
carried out several times varying the variances of normal distributed noise added to the
image point positions. Fig. 2 shows that a final result is reached in the first 4 iteration
steps, even though the quality of the result, especially of the epipole position, is not
very high. Further investigations in the next section compare this result to the results
from other estimation methods.
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Fig. 2. Convergence of the iterative linearized essential matrix estimation approach on simulated
point correspondences. The mean absolute rotation error Δrabs is plotted against the iteration
(left). In the right image, the mean absolute epipole error δeabs is plotted against the iteration.
Normal distributed noise with different variances has been added to each of the image point
positions.

Comparison: The error after the final iteration of the proposed linearized iterative
approach was compared to the other 3 algorithms (fig. 3) with varying additional noise
on the image point positions. For this investigation the absolute mean rotational error
Δr and the absolute mean epipole error δe are used:

Δr = || 1
N

N∑

n=1

r(Rc, k, n) − rt,n||2 δe = || 1
N

N∑

n=1

ec,k,n − et,n||2 (19)

Fig. 3 shows the superiority of the LM algorithm with the geometric error function. The
accuracy for the epipole position and the rotation error which is achieved by the three
algorithms using the algebraic error is within the same magnitude range.

3.2 Robust Essential Matrix Refinement

The algorithms for robust parameter estimation can be sorted into 4 different categories
[22, 26, 33], namely:

1. Algorithms that use clustering techniques.
2. M-Estimators use an iterative re-weighting technique to achieve robustness, while

using all available data.
3. Case deletion diagnostic algorithms try to identify outliers and reject them from the

computation.
4. Algorithms that use random sampling techniques to achieve a solution with a min-

imal data set.

In [26] a comparison between some of the above mentioned robust estimation meth-
ods has been carried out for the case of estimating the fundamental matrix. In this study
the best random sampling algorithm (LMedS) shows superior results in comparison to
the best member of the M-Estimator class, while the best method in case deletion di-
agnostics is only slightly worse than the LMedS algorithm. The RANSAC method per-
forms only slightly worse than the LMedS method. In this system the MSAC algorithm,
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Fig. 3. Comparison of the accuracy of the 4 different approaches described in section 3.1. The
mean rotational error Δr (left figure) and the mean epipole error δe (right figure) is plotted against
the variance of the normal distributed noise added to the image point positions. The Levenberg-
Marquard algorithm with the geometric error function shows superior results to the three other
approaches. The error after the final iteration is used in the linearized iterative approach.

a method similar to RANSAC and LMedS, is chosen. Because the MSAC algorithm is
an enhancement to the RANSAC algorithm and shares the main ideas, the RANSAC
algorithm is described first:

RANSAC: The RANSAC algorithm [6] is robust in the case of data heavily corrupted
with outliers. Assume that there are m data and a minimum of n of them is needed to
estimate the parameter vector. The approach works as follows:

– Randomly select a minimum set of n data and extract the parameters x from them.
– Calculate the number k of data from the overall set supporting the parameters x

with respect to a given threshold t over the residue ri.
– If k is bigger than a given fraction, calculate the least squares solution from all data

supporting x and exit with success.
– Repeat the above steps L times.
– Either use the parameters with the biggest support k, calculate the least squares

solution and exit with success or exit with failure.

This is in fact a search for the solution that minimizes the cost function [25]

C =
∑

i

ρ(ri) with ρ(ri) =

{
0 r2

i < t2

const. r2
i ≥ t2

(20)

The number of trials L needed to ensure at least one outlier free set of data with proba-
bility z can be calculated by

L =
log(1 − z)
log(1 − pn)

, (21)

where p is the expected outlier fraction in the data [6].

MSAC: In the RANSAC algorithm, the penalty for each datum is either 0 or some
constant value. The residuum associated with the datum is only used to make a binary
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decision about the penalty. This undesirable situation can be resolved with no extra cost
by replacing ρ(ri) by

ρ2(ri) =

{
r2
i r2

i < t2

const. r2
i ≥ t2

(22)

in the cost function (eq. 20) of the RANSAC algorithm [25]. The cosine of the an-
gle between the predicted and the measured flow is used as the residual value in this
application.

4 Sequential Monte Carle Sampling Resampling

First the general concept of the CONDENSATION algorithm is summarized. The CON-
DENSATION algorithm is a particle filter and hence a Sequential Monte Carle Sam-
pling Resampling SMCSR algorithm. Then the application of the SMCSR algorithm
for detection of independent motion is described.

4.1 CONDENSATION

The CONDENSATION algorithm is designed to propagate any probability density
function (pdf) over time. Due to the computational complexity of this task, pdfs are
approximated by a set of weighted samples. The weight πn is given by

πn =
pz(s(n))

∑N
j=1 pz(s(j))

(23)

where pz(x) = p(z|x) is the conditional observation density representing the proba-
bility of a measurement z, given that the system is in the state x. s(n) represents the
position of sample n in the state space.

Propagation: From the known a priori pdf, samples are randomly chosen with regard
to their weight πi. In doing so, a sample can be chosen several times. A motion model
is applied to the sample positions and diffusion is done by adding Gaussian noise to
each sample position. A sample that was chosen multiple times results in several spatial
close samples after the diffusion step. Finally, the weight is calculated by measuring the
conditional observation p(z|x) and using it in eq. 23. The a posteriori pdf represented
by these samples is acting as a priori pdf in the next time step. This iterative evaluation
scheme is closely related to Bayes’ law

p(x|z) =
p(z|x)p(x)

p(z)
(24)

where p(z) can be interpreted as a normalization constant, independent of the system
state x [12]. The sample representation of the a posteriori pdf p(x|z) is calculated by
implicitly using the a priori pdf p(x) as the sample base from which new samples are
chosen and the probability of a measurement p(z|x) given a certain state of the system
x (eq. 23). The sample representation of the a posterior pdf converges “almost sure”
against the true a posteriori pdf when using an infinite number of samples [5].
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Initialization: In order to initialize without human interaction a fraction of the samples
are chosen by using a random variable which is distributed according to an initialization
distribution in every time step. With a very high initialization fraction, the samples will
most probably no longer represent the correct a posteriori pdf, even with a very large
number of samples. The disturbance of the a posteriori pdf representation from the
initialization samples can be reduced by using importance sampling [5]. Since this is not
(yet) done, the algorithm will be called a sequential Monte Carlo sampling resampling
algorithm rather than a particle filter. In the first time step, all samples are chosen using
the initialization function.

4.2 Amplified Detection of Independent Motion

Since optical flow (OF) is computationally expensive, the number of OF measurements
have to be restricted. However, when computing OF at sparse locations, one would
like to capture as much flow on independently moving objects as possible. An adapted
particle filter is chosen for this task. In this application the probability for a position
belonging to an independently moving object is chosen as the pdf for the CONDEN-
SATION algorithm, resulting in a state dimension of 2. A fraction of the samples are
chosen by propagating samples from the last time step using the CONDENSATION
approach. Hereby samples are chosen randomly with respect to their weight. Samples
with a high weight (a high probability for an independently moving object) are cho-
sen with a higher probability. In general these high weight samples are chosen multiple
times, resulting in more samples in the vicinity of the old sample after the diffusion in
the next time step. The remaining part of the samples are generated by using a random
variable with a distribution depending on the image gradient. OF is measured at each
sample position.

Measurement: The measurement at each sample position should represent the proba-
bility p(x) that this sample is located on an independently moving object. Let α denote
the angle between the predicted translational optical flow pointing away from FOES and
the rotation corrected OF vector pointing away from FOEM (see Fig. 5). cα = cos(α)
is used as a basis for the calculation of this probability [28]. The probability for an in-
dependently moving object pci(cα) in dependence of cα is modeled as a rounded step
function:

pci(cα) =

{
ef(ci)·cα+ln(0.5)−ci·f(ci) if cα > ci,

1.0 − e−f(ci)·cα+ln(0.5)+ci·f(ci) if cα ≤ ci,
(25)

where f(ci) = ln(0.01)−ln(0.5)
1.0−|ci| is a function of the inflection point ci. Since it is not

feasible to set probabilities to 1.0 or 0.0, pci(cα) is scaled and shifted to represent a
minimum uncertainty. Fig. 4 shows pci(cα).

In the proposed algorithm, the inflection point is chosen automatically to be ci =
c̃α − σcα , where c̃α is the median of all the cosine angles not detected as “moving” in
the last time step, and σcα is the variance of the cα. Choosing ci automatically has the
advantage, that erroneous camera positions do not disturb the measurement. This only
holds under the assumption that more than half of the flow vectors are located on the
static scene.



Robust Monocular Detection of Independent Motion by a Moving Observer 219

 0

 0.2

 0.4

 0.6

 0.8

 1

-1 -0.5  0  0.5  1

p c
i(c

α)

cα = cos(α)

Fig. 4. The probability pci(cα) that a flow mea-
surement is located on an independently mov-
ing object in dependence of cα = cos(α) at a
given inflection point ci = 0.7

independently moving object

SFOE
A α

MFOE
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away from FOES) and the measured flow di-
rection (pointing away from FOEM )

Similar terms ensuring a minimum cornerness pc (since OF can only be computed
with spatial structure), a minimum flow length pf (standing for the accuracy of the OF
computation) and a minimum distance from the focus of expansion pFOE (since errors
in the FOE position influence the direction prediction for closer points more than for
points further away) are introduced. The overall probability p(x) = p(z|x) is then given
by:

p(x) = pci(cα) · pc · pf · pFOE (26)

In order to further stabilize the result, spatial and temporal filters are applied to the
resulting probability images [29].

5 Experiments

To investigate the results of the essential matrix estimation process, the histogram over
all angles between the predicted and the measured direction of the translational flow
component is used (fig 6). Fig 6 shows that most flow vectors have the expected di-
rection (cos(α) ≈ 1.0) after the refinement process, in contrast to before. At the same
time, the flow vectors lying on independently moving objects still have a significant
angle to the predicted translational flow (cos(α) ≈ −1.0). As a simple way to score
these histograms, the median of all angles is chosen. The closer the median lies to the
expected value of 1.0, the better is the given essential matrix under the assumption that
more than half of the flow measurements are located on points belonging to the sta-
tic scene. To test the algorithm a simulated street intersection was realized in VRML.
Simple block models of houses, textured with real image data, are located on the cor-
ners of the intersecting street (Fig. 8). A model of a car was used as an independently
moving object. Screenshots of a ride through this intersection provided the image data,
while the sensor information was calculated from the known camera pose and parame-
ters. The uncertainty of the camera pose was modeled as additional normal distributed
noise on the camera position and rotation. In fig. 7 the median of the cosine of all an-
gles between the predicted and the measured translational flow vectors is evaluated over
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the synthetic image sequence. In most of the images, the correct essential matrix is esti-
mated (median = 1.0) while in some images an incorrect estimate of the essential matrix
was estimated. This behavior results from the restricted number of tries in the MSAC
algorithm, and vanishes (at the expense of additional computation time) when more
tries are conducted. The resulting detector output is shown in fig. 8. Points where the
spatio-temporal filter output is above a certain threshold are marked with white blobs.

Fig. 8. Some images from the synthetic intersection sequence. The camera is moving on a straight
line, while the car in the image is on a collision course. Points where the filter output is above a
threshold of 0.35 are marked white.

6 Conclusions and Further Work

A fast and robust sequential Monte Carlo sampling resampling system for the detec-
tion of independently moving objects by a moving observer has been presented. The
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robustness against single measurement errors in the optical flow mainly results from
the sequential Monte Carlo sampling resampling approach, while its robustness against
erroneous camera pose data results from the chosen random sampling consensus ap-
proach. Experiments with synthetic were accomplished. Further work will include:

– experiments on real data
– run time optimization
– clustering of detected independently moving points
– investigation of the trajectory extraction possibility of moving objects
– enhanced fusion of inertial sensor information (speed, yawrate and steering angle)

with image based measurements (optical flow from static scene).
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Abstract. We present a probabilistic framework for component-based automatic
detection and tracking of objects in video. We represent objects as spatio-temporal
two-layer graphical models, where each node corresponds to an object or com-
ponent of an object at a given time, and the edges correspond to learned spatial
and temporal constraints. Object detection and tracking is formulated as inference
over a directed loopy graph, and is solved with non-parametric belief propagation.
This type of object model allows object-detection to make use of temporal consis-
tency (over an arbitrarily sized temporal window), and facilitates robust tracking
of the object. The two layer structure of the graphical model allows inference over
the entire object as well as individual components. AdaBoost detectors are used
to define the likelihood and form proposal distributions for components. Proposal
distributions provide ‘bottom-up’ information that is incorporated into the infer-
ence process, enabling automatic object detection and tracking. We illustrate our
method by detecting and tracking two classes of objects, vehicles and pedestrians,
in video sequences collected using a single grayscale uncalibrated car-mounted
moving camera.

1 Introduction

The detection and tracking of complex objects in natural scenes requires rich mod-
els of object appearance that can cope with variability among instances of the object
and across changing viewing and lighting conditions. Traditional optical flow meth-
ods are often ineffective for tracking objects because they are memoryless; that is, they
lack any explicit model of object appearance. Here we seek a model of object appear-
ance that is rich enough for both detection and tracking of objects such as people or
vehicles in complex scenes. To that end we develop a probabilistic framework for au-
tomatic component-based detection and tracking. By combining object detection with
tracking in a unified framework we can achieve a more robust solution for both prob-
lems. Tracking can make use of object detection for initialization and re-initialization
during transient failures or occlusions, while object detection can be made more reli-
able by considering the consistency of the detection over time. Modeling objects by an
arrangement of image-based (possibly overlapping) components, facilitates detection of
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complex articulated objects, as well as helps in handling partial object occlusions or lo-
cal illumination changes.

Object detection and tracking is formulated as inference in a two-layer graphical
model in which the coarse layer node represents the whole object and the fine layer
nodes represent multiple component “parts” of the object. Directed edges between
nodes represent learned spatial and temporal probabilistic constraints. Each node in
the graphical model corresponds to a position and scale of the component or the object
as a whole in an image at a given time instant. Each node also has an associated Ad-
aBoost detector that is used to define the local image likelihood and a proposal process.
In general the likelihoods and dependencies are not Gaussian. To infer the 2D posi-
tion and scale at each node we exploit a form of non-parametric belief propagation
(BP) that uses a variation of particle filtering and can be applied over a loopy graph
[8, 15].

The problem of describing and recognizing categories of objects (e.g. faces, people,
cars) is central to computer vision. It is common to represent objects as collections of
features with distinctive appearance, spatial extent, and position [2, 6, 10, 11, 16, 17].
There is however a large variation in how many features one must use and how these
features are detected and represented. Most algorithms rely on semi-supervised learning
[11, 16, 17] schemes where examples of the desired class of objects must be manually
aligned, and then learning algorithms are used to automatically select the features that
best separate the images of the desired class from background image patches. More
recent approaches learn the model in an unsupervised fashion from a set of unlabeled
and unsegmented images [2, 6]. In particular, Fergus et al [6] develop a component
based object detection algorithm that learns an explicit spatial relationship between
parts of an object, but unlike our framework assumes Gaussian likelihoods and spatial
relationships and does not model temporal consistency.

In contrast to part-based representations, simple discriminative classifiers treat an
object as a single image region. Boosted classifiers [16], for example, while very suc-
cessful tend to produce a large set of false positives. While this problem can be reduced
by incorporating temporal information [17], discriminative classifiers based on boost-
ing do not explicitly model parts or components of objects. Such part-based models are
useful in the presence of partial occlusions, out-of-plane rotation and/or local lighting
variations [5, 11, 18]. Part- or component-based detection is also capable of handling
highly articulated objects [10], for which a single appearance model classifier may be
hard to learn. An illustration of the usefulness of component-based detection for vehi-
cles is shown in Fig. 1. While all vehicles have almost identical parts (tires, bumper,
hood, etc.) their placement can vary significantly due to large variability in the height
and type of vehicles.

Murphy et al [12] also use graphical models in the patch-based detection scheme.
Unlike our approach they do not incorporate temporal information or explicitly rea-
son about the object as a whole. Also closely related is the work of [13] which uses
AdaBoost for multi-target tracking and detection. However, their Boosted Particle Fil-
ter [13] does not integrate component-based object detection and is limited to temporal
propagation in only one direction (forward in time). In contrast to these previous ap-
proaches we combine techniques from discriminative learning, graphical models, belief
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Fig. 1. Variation in the vehicle class of objects is shown. While objects shown here have a dras-
tically different appearance as a whole due to the varying height and type of the vehicle, their
components tend to be very homogeneous and are easy to model.

propagation, and particle filtering to achieve reliable multi-component object detection
and tracking.

In our framework, object motion is represented via temporal constraints (edges) in
the graphical model. These model-based constraints for the object and components are
learned explicitly from the labeled data, and make no use of the optical flow informa-
tion. However the model could be extended to use explicit flow information as part
of the likelihood model, or as part of the proposal process. In particular, as part of
the proposal process, optical flow information can be useful in focusing the search
to the regions with “interesting” motion, that are likely to correspond to an object or
part/component of an object.

2 Graphical Object Models

Following the framework of [14] we model an object as a spatio-temporal directed
graphical model. Each node in the graph represents either the object or a component
of the object at time t. Nodes have an associated state vector XT = (x, y, s) defining
the component’s real-valued position and scale within an image. The joint probability
distribution for this spatio-temporal graphical object model with N components and
over T frames can be written as:
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t is the state of the object, O, and object’s n-th component, Cn,
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the spatial compatibility between object components at frame i; and φi(Yi,XO
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i ) denote the local evidence (likelihood) for the object and component states
respectively.
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(a) (b)

Fig. 2. Graphical models for the (a) pedestrian and (b) vehicle detection and tracking. Spatio-
temporal models are obtained by replicating a spatial model (shown by the shaded region) along
the temporal domain to a w-length window and then connecting the object layer nodes across
time.

Our framework can be viewed as having five distinct components: (i) a graphical
model, (ii) an inference algorithm that infers a probability distribution over the state
variables at each node in the graph, (iii) a local evidence distribution (or image likeli-
hood), (iv) a proposal process for some or all nodes in a graphical model, and (v) a set
of spatial and/or temporal constraints corresponding to the edges in a graph. We will
now discuss each one of these in turn.

2.1 Building the Graphical Model

For a single frame we represent objects using a two-layer spatial graphical model. The
fine, component, layer contains a set of loosely connected “parts.” The coarse, object,
layer corresponds to an entire appearance model of the object and is connected to all
constituent components. Examples of such models for pedestrian and vehicle detection
are shown in a the shaded regions of Fig. 2a and 2b respectively. In both cases objects
are modeled using four overlapping image components. For the vehicle the compo-
nents are: top-left (TL), top-right (TR), bottom-right (BR) and bottom-left (BL) cor-
ners; while for the pedestrian, they are: head (HD), left arm (LA), right arm (RA) and
legs (LG) (see Fig. 3ab).

To integrate temporal constraints we extend the spatial graphical models over time to
an arbitrary-length temporal window. The resulting spatio-temporal graphical models
are shown in Fig. 2a and 2b. Having a two-layer graphical model, unlike the single
component layer model of [14], allows the inference process to reason explicitly about
the object as a whole, as well as helps reduce the complexity of the graphical model,
by allowing the assumption of independence of components over time conditioned on
the overall object appearance. Alternatively, one can also imagine building a single
object layer model, which would be similar to the Boosted Particle Filter [13] (with
bi-directional temporal constraints).
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(a) (b) (c) (d) (e)

Fig. 3. Components for the (a) pedestrian and (b) vehicle object models (entire appearance model
is in cyan) and learned conditional distributions from (c) Bottom-Left (BL) to Top-Left (TL)
component, (d) Bottom-Left (BL) to the whole appearance model, and (e) whole appearance
model to the Bottom-Left (BL) component

2.2 Learning Spatial and Temporal Constraints

Each directed edge between components i and j has an associated potential function
ψij(Xi,Xj) that encodes the compatibility between pairs of node states. The potential
ψij(Xi,Xj) is modeled using a mixture of Mij Gaussians (following [14])

ψij(Xi,Xj) = λ0N (Xj ;μij , Λij) + (1 − λ0)

Mij�
m=1

πijmN (Xj ;Fijm(Xi), Gijm(Xi))

where λ0 is a fixed outlier probability, μij and Λij are the mean and covariance of
the Gaussian outlier process, and Fijm(Xi) and Gijm(Xi) are functions that return
the mean and covariance matrix respectively of the m-th Gaussian mixture component.
πijm is the relative weight of an individual component and

∑Mij

m=1 πijm = 1. For ex-
periments in this paper we used Mij = 2 mixture components.

Given a set of labeled images, where each component is associated with a single
reference point, we use standard iterative Expectation-Maximization (EM) algorithm
with K-means initialization to learn Fijm(Xi) of the form:

Fijm(Xi) = Xi +
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where μx
ijm, μy

ijm, μs
ijm is the mean position and scale of component or object j relative

to i. Gijm(Xi) is assumed to be diagonal matrix, representing the variance in relative
position and scale. Examples of the learned conditional distributions can be seen in
Fig. 3cde.

2.3 AdaBoost Image Likelihoods

The likelihood, φ(Y,Xi) models the probability of observing the image Y conditioned
on the state Xi of the node i, and ideally should be robust to partial occlusions and the
variability of image statistics across many different inputs. To that end we build our
likelihood model using a boosted classifier.
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Following [16] we train boosted detectors for each component. For simplicity we
use AdaBoost [16] without a cascade (training with a cascade would likely improve
the computational efficiency of the system). In order to reduce the number of false
positives produced by the detectors, we use a bootstrap procedure that iteratively adds
false positives that are collected by running the trained strong classifier over the set of
background images (not containing the desired object) and then re-training the detectors
using the old positive and the new extended negative sets.

Given a set of labeled patterns the AdaBoost procedure learns a weighted combina-
tion of base weak classifiers, h(I) =

∑K
k=1 αkhk(I), where I is an image pattern, and

hk(I) is the weak classifier chosen for the round k of boosting, and αk is the corre-
sponding weight. We use a weak classifier scheme similar to the one discussed in [16]:

hk(I) = pk

��
βk

�
(fk(I))βk < θk

��
, where fk(I) is a feature of the pattern I computed

by convolving I with the delta function over the extent of a spatial template; θk is a
threshold, pk is the polarity indicating the direction of inequality, and βk ∈ [1, 2] allow-
ing for a symmetric two sided pulse classification.

The output of the AdaBoost classifier is a confidence hk(I) that the given pattern
I is of the desired class. It is customary to consider an object present if hk(I) ≥
1
2

∑K
k=1 αk. We convert this confidence into a likelihood function by first normaliz-

ing the αk’s, so that h(I) ∈ [0, 1], and then exponentiating

φ(Y,Xi) ∝ exp(h(I)/T ) (2)

where image pattern I is obtained by cropping full image Y based on the state of
the object or component Xi; and T is an artificial temperature parameter that controls
the smoothness of the likelihood function, with smaller values of T leading to peakier
distribution. Consequently we can also anneal the likelihood by deriving a schedule
with which T changes. We found an exponential annealing schedule T = T0υ

κ, where
T0 is the initial temperature, υ is a fraction ∈ (0, 1), and κ is the annealing iteration, to
work well in practice. AdaBoost classifiers are learned using a database of 861 vehicles
and 662 pedestrians [11]. The number of negative examples after bootstrapping tends
to be on the order of 2000 to 3000.

Depending on an object one may or may not have a likelihood or a proposal process
for the object layer nodes. For example if the whole appearance of an object is in-
deed too complicated to model as a whole (e.g. arbitrary size vehicles) and can only
be modeled in terms of components, we can simply assume a uniform likelihood over
the entire state space. In such cases the object layer nodes simply fuse the compo-
nent information to produce estimates for the object state that are consistent
over time.

It is worth noting that the assumption of local evidence independence implicit in
our graphical model is only approximate, and may be violated in the regions where
object and components overlap. In such cases the correlation or bias introduced into
the inference process will depend on the nature of the filters chosen by the boosting
procedure. While this approximation works well in practice, we plan to study it more
formally in the future.
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2.4 Non-parametric BP

Inferring the state of the object and it’s components in our framework is defined as
estimating belief in a graphical model. We use a form of non-parametric belief propa-
gation [8] PAMPAS to deal with this task. The approach is a generalization of particle
filtering [4] which allows inference over arbitrary graphs rather then a simple chain.
In this generalization the ‘message’ used in standard belief propagation is approxi-
mated with a kernel density (formed by propagating a particle set through a mixture of
Gaussians density), and the conditional distribution used in standard particle filtering is
replaced by product of incoming messages. Most of the computational complexity lies
in sampling from a product of kernel densities required for message passing and belief
estimation; we use efficient sequential multi-scale Gibbs sampling and epsilon-exact
sampling [7] to address this problem.

Individual messages may not constrain a node well, however the product over all
incoming messages into the node tends to produce a very tight distribution in the state
space. For example, any given component of a vehicle is incapable of estimating the
height of the vehicle reliably, however once we integrate information from all compo-
nents in the object layer node, we can get a very reliable estimate for the overall object
size.

More formally a message mij from node i to node j is written as

mij(Xj) =
∫
ψij(Xi,Xj)φi(Yi,Xi)

∏

k∈Ai/j

mki(Xi)dXi, (3)

where Ai/j is the set of neighbors of node i excluding node j and φi(Yi,Xi) is the
local evidence (or likelihood) associated with the node i, and ψij(Xi,Xj) is the poten-
tial designating the compatibility between the states of node i and j. The details of how
the message updates can be carried out by stratified sampling from belief and proposal
function see [14].

1 23 45

6

7
8

Fig. 4. Vehicle component-based spatio-temporal object detection for multiple targets. The algo-
rithm was queried for 8 targets. The mean of 30 samples from the belief for each object are shown
in red. Targets are found one at the time using an iterative approach that adjusts the likelihood
functions to down weight regions where targets have already been found.
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While it is possible and perhaps beneficial to perform inference over the spatio-
temporal model defined for the entire image sequence, there are many applications for
which this is impractical due to the lengthy off-line processing required. Hence, we use
a w-frame windowed smoothing algorithm where w is an odd integer ≥ 1 (see Fig. 2).
There are two ways one can do windowed smoothing: in an object-detection centric
way or a tracking-centric way. In the former we re-initialize all nodes every time we
shift a window, hence the temporal integration is only applied in the window of size w.
In the tracking centric way we only initialize the nodes associated with a new frame,
which tends to enforce temporal consistency from before t− (w−1)/2. While the later
tends to converge faster and produce more consistent results over time, it is also less
sensitive to objects entering and leaving the scene. Note that with w = 1, the algorithm
resembles single-frame component-based fusion [18].

2.5 Proposal Process

To reliably detect and track the object non-parametric BP makes use of the bottom-up
proposal process, that constantly looks for and suggests alternative hypothesis for the
state of the object and components. We model a proposal distribution using a weighted
particle set. To form a proposal particle set for a component, we run the corresponding
AdaBoost detector over an image at a number of scales to produce a set of detection
results that score above the 1

2

∑K
k=1 αk threshold. While this set tends to be manageable

for the entire appearance model, it is usually large for non-specific component detectors
(a few thousand locations can easily be found). To reduce the dimensionality we only
keep the top P scoring detections, where P is on the order of a 100 to 200. To achieve
breadth of search we generate proposed particles by importance sampling uniformly
from the detections. For more details on the use of the proposal process in the PAMPAS

framework see [14].

3 Experiments

Tests were performed using a set of images collected with a single car-mounted gray-
scale camera. The result of vehicle detection and tracking over a sequence of 55 con-
secutive frames can be seen in Fig. 5. A 3-frame spatio-temporal object model was used
and was shifted in a tracking-centric way over time. We run BP with 30 particles for
10 iterations at every frame. For comparison we implemented a simple fusion scheme
that averages the best detection result from each of the four components (Fig. 5(b) ‘Best
Avg.’) to produce an estimate for the vehicle position and scale independently at every
frame. The performance of the simple fusion detection is very poor suggesting that the
noisy component detectors often do not have the global maximum at the correct posi-
tion and scale. In contrast, the spatio-temporal object model consistently combines the
evidence for accurate estimates throughout the sequence.

The performance of the pedestrian spatio-temporal detector is shown in Fig. 6. A
3-frame spatio-temporal object model is run at a single instance in time for two pedes-
trians in two different scenes. Similar to the vehicle detection we run BP with 30 par-
ticles for 10 iterations. For both experiments the temperature of the likelihood is set to
T0 = 0.2.
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(a)
(TL) (TR) (BR) (BL)

(b)
(Best Avg) (Components) (Object)

Fig. 5. Vehicle component-based spatio-temporal object detection and tracking. (a) shows sam-
ples from the initialization/proposal distribution, and (b) 30 samples taken from the belief for each
of the four component (middle) and an object (right). The detection and tracking was conducted
using a 3-frame smoothing window. Frames 2 through 52 are shown (top to bottom respectively)
at 10 frame intervals. For comparison (b) (left) shows the performance of a very simple fusion
algorithm, that fuses the best result from each of the components by averaging.

While in general the algorithm presented here is capable of detecting multiple tar-
gets, by converging to multi-modal distributions for components and objects, in practice
this tends to be quite difficult and requires many particles. Particle filters in general have
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(a)

(HD) (LUB) (RUB)

(LB) (Object)

(Components) (Object)

(b)

(HD) (LUB) (RUB)

(LB) (Object)

(Components) (Object)

Fig. 6. Pedestrian component-based spatio-temporal object detection for two subjects (a) and
(b). (top) shows the initialization/proposal distribution, and (bottom) 30 samples taken from the
belief for each of the four component and an object. The detection was conducted using a 3-frame
temporal window.
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been shown to have difficulties when tracking multi-modal distributions [13]. The PAM-
PAS framework used here is an extension of particle filtering, and the message update
involves taking a product over particle sets, consequently, PAMPAS suffers from similar
problems. Furthermore, belief propagation over a loopy graph such as ours may fur-
ther hinder the modeling of multi-modal distributions. To enable multi-target tracking
then we employ a peak suppression scheme, where modes are detected one at a time,
and then the response of the likelihood function is suppressed in the regions where
peaks have already been found. An example of this obtained by running a purely spatial
graphical model over the image containing 6 vehicles is shown in Fig. 4.

4 Conclusion

In this paper we present a novel object detection and tracking framework exploit-
ing boosted classifiers and non-parametric belief propagation. The approach provides
component-based detection and integrates temporal information over an arbitrary size
temporal window. We illustrate the performance of the framework with two classes of
objects: vehicles and pedestrians. In both cases we can reliably infer position and scale
of the objects and their components. Further work needs to be done to evaluate how
the method copes with changing lighting and occlusion. Additional work is necessary
to develop a mutli-target scheme that incorporates a probabilistic model of the entire
image.

The algorithm developed here is quite general and might be applied to other ob-
jection tracking and motion estimation problems. For example, we might formulate a
parameterized model of facial motion in which the optical flow in different image re-
gions (mouth, eyes, eyebrows) are modeled independently. These motion parameters
for these regions could then be coupled via the graphical model and combined with a
top-level head tracker. Such an approach might offer improved robustness over previous
methods for modeling face motion [1].
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